Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes p and q as the lowest node in T that has both p and q as descendants (where we allow a node to be a descendant of itself).”
Given the following binary tree: root = [3,5,1,6,2,0,8,null,null,7,4]
_______3______
/ \
___5__ ___1__
/ \ /
6 _2 0 8
/
7 4
Example 1:
Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
Output: 3
Explanation: The LCA of of nodes 5 and 1 is 3.
Example 2:
Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
Output: 5
Explanation: The LCA of nodes 5 and 4 is 5, since a node can be a descendant of itself
according to the LCA definition.
- Method 1:递归
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
if(root == null) return null;
if(root == q || root == p) return root;
boolean inLeft = contains(root.left, p);
boolean inRight = contains(root.right, q);
if((inLeft && inRight) || (!inLeft && !inRight)) return root;
else if(inLeft && !inRight) return lowestCommonAncestor(root.left, p, q);
else if(inRight && !inLeft) return lowestCommonAncestor(root.right, p, q);
return null;
}
private boolean contains(TreeNode root, TreeNode node){
if(root == null) return false;
if(root == node) return true;
return contains(root.left, node) || contains(root.right, node);
}
}
- Method 2:减少递归的次数。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
if(root == null || root == p || root == q) return root;
TreeNode left = lowestCommonAncestor(root.left, p, q);
TreeNode right = lowestCommonAncestor(root.right, p, q);
if(left != null && right != null) return root;
else if(left != null) return left;
else if(right != null) return right;
return null;
}
}
- Same as previous quesiton, I just copy and paste.
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
if(root == null) return null;
if(root == q || root == p) return root;
boolean pinLeft = contains(root.left, p);
boolean pinRight = contains(root.right, p);
boolean qinRight = contains(root.right, q);
boolean qinLeft = contains(root.left, q)
if(pinLeft && qinRight) return root;
else if(pinRight && qinLeft) return root;
else if(pinLeft && qinLeft) return lowestCommonAncestor(root.left, p, q);
else if(pinRight && qinRight) return lowestCommonAncestor(root.right, p, q);
return null;
}
private boolean contains(TreeNode root, TreeNode node){
if(root == null) return false;
if(root == node) return true;
return contains(root.left, node) || contains(root.right, node);
}
}
- I modified the result a little bit and get a result.
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
if(p == root || q == root) return root;
boolean pInLeft = isChild(root.left, p);
boolean qInRight = isChild(root.right, q);
if(pInLeft && qInRight || !pInLeft && !qInRight) return root;
else if(!pInLeft && qInRight){
return lowestCommonAncestor(root.right, p, q);
}else{
return lowestCommonAncestor(root.left, p, q);
}
}
private boolean isChild(TreeNode node, TreeNode p){
if(node == null) return false;
if(node == p) return true;
return isChild(node.left, p) || isChild(node.right, p);
}
}
- Method 3, it is using divide and conquer method.
- We first find their common ancestor in left child. Result is A.
- Then we find their common ancestor in right child. Result is B.
- if A and B are both not null, it means current node is their closest common ancestor.
- if one of them is not null, the other one is their closest common ancestor.
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
if(root == p || root == q || root == null) return root;
TreeNode left = lowestCommonAncestor(root.left, p ,q);
TreeNode right = lowestCommonAncestor(root.right, p ,q);
if(left != null && right != null){
return root;
}else if(left != null) return left;
else if(right != null) return right;
return null;
}
}
- Method 1: Divide and Conquer
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ class Solution { public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) { if(root == p || root == q || root == null) return root; TreeNode left = lowestCommonAncestor(root.left, p, q); TreeNode right = lowestCommonAncestor(root.right, p, q); if(left != null && right != null) return root; else if(left != null) return left; else if(right != null) return right; return null; } }