|
| 1 | +import matplotlib.pyplot as plt |
| 2 | +import numpy as np |
| 3 | +from sklearn.datasets import make_moons |
| 4 | +import warnings |
| 5 | + |
| 6 | + |
| 7 | +def euclidean_distance(q, p): |
| 8 | + """ |
| 9 | + Calculates the Euclidean distance |
| 10 | + between points q and p |
| 11 | +
|
| 12 | + Distance can only be calculated between numeric values |
| 13 | + >>> euclidean_distance([1,'a'],[1,2]) |
| 14 | + Traceback (most recent call last): |
| 15 | + ... |
| 16 | + ValueError: Non-numeric input detected |
| 17 | +
|
| 18 | + The dimentions of both the points must be the same |
| 19 | + >>> euclidean_distance([1,1,1],[1,2]) |
| 20 | + Traceback (most recent call last): |
| 21 | + ... |
| 22 | + ValueError: expected dimensions to be 2-d, instead got p:3 and q:2 |
| 23 | +
|
| 24 | + Supports only two dimentional points |
| 25 | + >>> euclidean_distance([1,1,1],[1,2]) |
| 26 | + Traceback (most recent call last): |
| 27 | + ... |
| 28 | + ValueError: expected dimensions to be 2-d, instead got p:3 and q:2 |
| 29 | +
|
| 30 | + Input should be in the format [x,y] or (x,y) |
| 31 | + >>> euclidean_distance(1,2) |
| 32 | + Traceback (most recent call last): |
| 33 | + ... |
| 34 | + TypeError: inputs must be iterable, either list [x,y] or tuple (x,y) |
| 35 | + """ |
| 36 | + if not hasattr(q, "__iter__") or not hasattr(p, "__iter__"): |
| 37 | + raise TypeError("inputs must be iterable, either list [x,y] or tuple (x,y)") |
| 38 | + |
| 39 | + if isinstance(q, str) or isinstance(p, str): |
| 40 | + raise TypeError("inputs cannot be str") |
| 41 | + |
| 42 | + if len(q) != 2 or len(p) != 2: |
| 43 | + raise ValueError( |
| 44 | + "expected dimensions to be 2-d, instead got p:{} and q:{}".format( |
| 45 | + len(q), len(p) |
| 46 | + ) |
| 47 | + ) |
| 48 | + |
| 49 | + for num in q + p: |
| 50 | + try: |
| 51 | + num = int(num) |
| 52 | + except: |
| 53 | + raise ValueError("Non-numeric input detected") |
| 54 | + |
| 55 | + a = pow((q[0] - p[0]), 2) |
| 56 | + b = pow((q[1] - p[1]), 2) |
| 57 | + return pow((a + b), 0.5) |
| 58 | + |
| 59 | + |
| 60 | +def find_neighbors(db, q, eps): |
| 61 | + """ |
| 62 | + Finds all points in the db that |
| 63 | + are within a distance of eps from Q |
| 64 | +
|
| 65 | + eps value should be a number |
| 66 | + >>> find_neighbors({ (1,2):{'label':'undefined'}, (2,3):{'label':'undefined'}}, (2,5),'a') |
| 67 | + Traceback (most recent call last): |
| 68 | + ... |
| 69 | + ValueError: eps should be either int or float |
| 70 | +
|
| 71 | + Q must be a 2-d point as list or tuple |
| 72 | + >>> find_neighbors({ (1,2):{'label':'undefined'}, (2,3):{'label':'undefined'}}, 2, 0.5) |
| 73 | + Traceback (most recent call last): |
| 74 | + ... |
| 75 | + TypeError: Q must a 2-dimentional point in the format (x,y) or [x,y] |
| 76 | +
|
| 77 | + Points must be in correct format |
| 78 | + >>> find_neighbors([], (2,2) ,0.4) |
| 79 | + Traceback (most recent call last): |
| 80 | + ... |
| 81 | + TypeError: db must be a dict of points in the format {(x,y):{'label':'boolean/undefined'}} |
| 82 | + """ |
| 83 | + |
| 84 | + if not isinstance(eps, (int, float)): |
| 85 | + raise ValueError("eps should be either int or float") |
| 86 | + |
| 87 | + if not hasattr(q, "__iter__"): |
| 88 | + raise TypeError("Q must a 2-dimentional point in the format (x,y) or [x,y]") |
| 89 | + |
| 90 | + if not isinstance(db, dict): |
| 91 | + raise TypeError( |
| 92 | + "db must be a dict of points in the format {(x,y):{'label':'boolean/undefined'}}" |
| 93 | + ) |
| 94 | + |
| 95 | + return [p for p in db if euclidean_distance(q, p) <= eps] |
| 96 | + |
| 97 | + |
| 98 | +def plot_cluster(db, clusters, ax): |
| 99 | + """ |
| 100 | + Extracts all the points in the db and puts them together |
| 101 | + as seperate clusters and finally plots them |
| 102 | +
|
| 103 | + db cannot be empty |
| 104 | + >>> fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(7, 5)) |
| 105 | + >>> plot_cluster({},[1,2], axes[1] ) |
| 106 | + Traceback (most recent call last): |
| 107 | + ... |
| 108 | + Exception: db is empty. No points to cluster |
| 109 | +
|
| 110 | + clusters cannot be empty |
| 111 | + >>> fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(7, 5)) |
| 112 | + >>> plot_cluster({ (1,2):{'label':'undefined'}, (2,3):{'label':'undefined'}},[],axes[1] ) |
| 113 | + Traceback (most recent call last): |
| 114 | + ... |
| 115 | + Exception: nothing to cluster. Empty clusters |
| 116 | +
|
| 117 | + clusters cannot be empty |
| 118 | + >>> fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(7, 5)) |
| 119 | + >>> plot_cluster({ (1,2):{'label':'undefined'}, (2,3):{'label':'undefined'}},[],axes[1] ) |
| 120 | + Traceback (most recent call last): |
| 121 | + ... |
| 122 | + Exception: nothing to cluster. Empty clusters |
| 123 | +
|
| 124 | + ax must be a plotable |
| 125 | + >>> plot_cluster({ (1,2):{'label':'1'}, (2,3):{'label':'2'}},[1,2], [] ) |
| 126 | + Traceback (most recent call last): |
| 127 | + ... |
| 128 | + TypeError: ax must be an slot in a matplotlib figure |
| 129 | + """ |
| 130 | + if len(db) == 0: |
| 131 | + raise Exception("db is empty. No points to cluster") |
| 132 | + |
| 133 | + if len(clusters) == 0: |
| 134 | + raise Exception("nothing to cluster. Empty clusters") |
| 135 | + |
| 136 | + if not hasattr(ax, "plot"): |
| 137 | + raise TypeError("ax must be an slot in a matplotlib figure") |
| 138 | + |
| 139 | + temp = [] |
| 140 | + noise = [] |
| 141 | + for i in clusters: |
| 142 | + stack = [] |
| 143 | + for k, v in db.items(): |
| 144 | + if v["label"] == i: |
| 145 | + stack.append(k) |
| 146 | + elif v["label"] == "noise": |
| 147 | + noise.append(k) |
| 148 | + temp.append(stack) |
| 149 | + |
| 150 | + color = iter(plt.cm.rainbow(np.linspace(0, 1, len(clusters)))) |
| 151 | + for i in range(0, len(temp)): |
| 152 | + c = next(color) |
| 153 | + x = [l[0] for l in temp[i]] |
| 154 | + y = [l[1] for l in temp[i]] |
| 155 | + ax.plot(x, y, "ro", c=c) |
| 156 | + |
| 157 | + x = [l[0] for l in noise] |
| 158 | + y = [l[1] for l in noise] |
| 159 | + ax.plot(x, y, "ro", c="0") |
| 160 | + |
| 161 | + |
| 162 | +def dbscan(db, eps, min_pts): |
| 163 | + """ |
| 164 | + Implementation of the DBSCAN algorithm |
| 165 | +
|
| 166 | + Points must be in correct format |
| 167 | + >>> dbscan([], (2,2) ,0.4) |
| 168 | + Traceback (most recent call last): |
| 169 | + ... |
| 170 | + TypeError: db must be a dict of points in the format {(x,y):{'label':'boolean/undefined'}} |
| 171 | +
|
| 172 | + eps value should be a number |
| 173 | + >>> dbscan({ (1,2):{'label':'undefined'}, (2,3):{'label':'undefined'}},'a',20 ) |
| 174 | + Traceback (most recent call last): |
| 175 | + ... |
| 176 | + ValueError: eps should be either int or float |
| 177 | +
|
| 178 | + min_pts value should be an integer |
| 179 | + >>> dbscan({ (1,2):{'label':'undefined'}, (2,3):{'label':'undefined'}},0.4,20.0 ) |
| 180 | + Traceback (most recent call last): |
| 181 | + ... |
| 182 | + ValueError: min_pts should be int |
| 183 | +
|
| 184 | + db cannot be empty |
| 185 | + >>> dbscan({},0.4,20.0 ) |
| 186 | + Traceback (most recent call last): |
| 187 | + ... |
| 188 | + Exception: db is empty, nothing to cluster |
| 189 | +
|
| 190 | + min_pts cannot be negative |
| 191 | + >>> dbscan({ (1,2):{'label':'undefined'}, (2,3):{'label':'undefined'}}, 0.4, -20) |
| 192 | + Traceback (most recent call last): |
| 193 | + ... |
| 194 | + ValueError: min_pts or eps cannot be negative |
| 195 | +
|
| 196 | + eps cannot be negative |
| 197 | + >>> dbscan({ (1,2):{'label':'undefined'}, (2,3):{'label':'undefined'}},-0.4, 20) |
| 198 | + Traceback (most recent call last): |
| 199 | + ... |
| 200 | + ValueError: min_pts or eps cannot be negative |
| 201 | +
|
| 202 | + """ |
| 203 | + if not isinstance(db, dict): |
| 204 | + raise TypeError( |
| 205 | + "db must be a dict of points in the format {(x,y):{'label':'boolean/undefined'}}" |
| 206 | + ) |
| 207 | + |
| 208 | + if len(db) == 0: |
| 209 | + raise Exception("db is empty, nothing to cluster") |
| 210 | + |
| 211 | + if not isinstance(eps, (int, float)): |
| 212 | + raise ValueError("eps should be either int or float") |
| 213 | + |
| 214 | + if not isinstance(min_pts, int): |
| 215 | + raise ValueError("min_pts should be int") |
| 216 | + |
| 217 | + if min_pts < 0 or eps < 0: |
| 218 | + raise ValueError("min_pts or eps cannot be negative") |
| 219 | + |
| 220 | + if min_pts == 0: |
| 221 | + warnings.warn("min_pts is 0. Are you sure you want this ?") |
| 222 | + |
| 223 | + if eps == 0: |
| 224 | + warnings.warn("eps is 0. Are you sure you want this ?") |
| 225 | + |
| 226 | + clusters = [] |
| 227 | + c = 0 |
| 228 | + for p in db: |
| 229 | + if db[p]["label"] != "undefined": |
| 230 | + continue |
| 231 | + neighbors = find_neighbors(db, p, eps) |
| 232 | + if len(neighbors) < min_pts: |
| 233 | + db[p]["label"] = "noise" |
| 234 | + continue |
| 235 | + c += 1 |
| 236 | + clusters.append(c) |
| 237 | + db[p]["label"] = c |
| 238 | + neighbors.remove(p) |
| 239 | + seed_set = neighbors.copy() |
| 240 | + while seed_set != []: |
| 241 | + q = seed_set.pop(0) |
| 242 | + if db[q]["label"] == "noise": |
| 243 | + db[q]["label"] = c |
| 244 | + if db[q]["label"] != "undefined": |
| 245 | + continue |
| 246 | + db[q]["label"] = c |
| 247 | + neighbors_n = find_neighbors(db, q, eps) |
| 248 | + if len(neighbors_n) >= min_pts: |
| 249 | + seed_set = seed_set + neighbors_n |
| 250 | + return db, clusters |
| 251 | + |
| 252 | + |
| 253 | +if __name__ == "__main__": |
| 254 | + |
| 255 | + fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(7, 5)) |
| 256 | + |
| 257 | + x, label = make_moons(n_samples=200, noise=0.1, random_state=19) |
| 258 | + |
| 259 | + axes[0].plot(x[:, 0], x[:, 1], "ro") |
| 260 | + |
| 261 | + points = {(point[0], point[1]): {"label": "undefined"} for point in x} |
| 262 | + |
| 263 | + eps = 0.25 |
| 264 | + |
| 265 | + min_pts = 12 |
| 266 | + |
| 267 | + db, clusters = dbscan(points, eps, min_pts) |
| 268 | + |
| 269 | + plot_cluster(db, clusters, axes[1]) |
| 270 | + |
| 271 | + plt.show() |
0 commit comments