|
| 1 | +// Author : cyrixninja |
| 2 | +// Interquartile Range : An implementation of interquartile range (IQR) which is a measure of statistical |
| 3 | +// dispersion, which is the spread of the data. |
| 4 | +// Wikipedia Reference : https://en.wikipedia.org/wiki/Interquartile_range |
| 5 | + |
| 6 | +use std::cmp::Ordering; |
| 7 | + |
| 8 | +pub fn find_median(numbers: &[f64]) -> f64 { |
| 9 | + let mut numbers = numbers.to_vec(); |
| 10 | + numbers.sort_by(|a, b| a.partial_cmp(b).unwrap_or(Ordering::Equal)); |
| 11 | + |
| 12 | + let length = numbers.len(); |
| 13 | + let mid = length / 2; |
| 14 | + |
| 15 | + if length % 2 == 0 { |
| 16 | + (numbers[mid - 1] + numbers[mid]) / 2.0 |
| 17 | + } else { |
| 18 | + numbers[mid] |
| 19 | + } |
| 20 | +} |
| 21 | + |
| 22 | +pub fn interquartile_range(numbers: &[f64]) -> f64 { |
| 23 | + if numbers.is_empty() { |
| 24 | + panic!("Error: The list is empty. Please provide a non-empty list."); |
| 25 | + } |
| 26 | + |
| 27 | + let mut numbers = numbers.to_vec(); |
| 28 | + numbers.sort_by(|a, b| a.partial_cmp(b).unwrap_or(Ordering::Equal)); |
| 29 | + |
| 30 | + let length = numbers.len(); |
| 31 | + let mid = length / 2; |
| 32 | + let (q1, q3) = if length % 2 == 0 { |
| 33 | + let first_half = &numbers[0..mid]; |
| 34 | + let second_half = &numbers[mid..length]; |
| 35 | + (find_median(first_half), find_median(second_half)) |
| 36 | + } else { |
| 37 | + let first_half = &numbers[0..mid]; |
| 38 | + let second_half = &numbers[mid + 1..length]; |
| 39 | + (find_median(first_half), find_median(second_half)) |
| 40 | + }; |
| 41 | + |
| 42 | + q3 - q1 |
| 43 | +} |
| 44 | + |
| 45 | +#[cfg(test)] |
| 46 | +mod tests { |
| 47 | + use super::*; |
| 48 | + |
| 49 | + #[test] |
| 50 | + fn test_find_median() { |
| 51 | + let numbers1 = vec![1.0, 2.0, 2.0, 3.0, 4.0]; |
| 52 | + assert_eq!(find_median(&numbers1), 2.0); |
| 53 | + |
| 54 | + let numbers2 = vec![1.0, 2.0, 2.0, 3.0, 4.0, 4.0]; |
| 55 | + assert_eq!(find_median(&numbers2), 2.5); |
| 56 | + |
| 57 | + let numbers3 = vec![-1.0, 2.0, 0.0, 3.0, 4.0, -4.0]; |
| 58 | + assert_eq!(find_median(&numbers3), 1.0); |
| 59 | + |
| 60 | + let numbers4 = vec![1.1, 2.2, 2.0, 3.3, 4.4, 4.0]; |
| 61 | + assert_eq!(find_median(&numbers4), 2.75); |
| 62 | + } |
| 63 | + |
| 64 | + #[test] |
| 65 | + fn test_interquartile_range() { |
| 66 | + let numbers1 = vec![4.0, 1.0, 2.0, 3.0, 2.0]; |
| 67 | + assert_eq!(interquartile_range(&numbers1), 2.0); |
| 68 | + |
| 69 | + let numbers2 = vec![-2.0, -7.0, -10.0, 9.0, 8.0, 4.0, -67.0, 45.0]; |
| 70 | + assert_eq!(interquartile_range(&numbers2), 17.0); |
| 71 | + |
| 72 | + let numbers3 = vec![-2.1, -7.1, -10.1, 9.1, 8.1, 4.1, -67.1, 45.1]; |
| 73 | + assert_eq!(interquartile_range(&numbers3), 17.2); |
| 74 | + |
| 75 | + let numbers4 = vec![0.0, 0.0, 0.0, 0.0, 0.0]; |
| 76 | + assert_eq!(interquartile_range(&numbers4), 0.0); |
| 77 | + } |
| 78 | + |
| 79 | + #[test] |
| 80 | + #[should_panic(expected = "Error: The list is empty. Please provide a non-empty list.")] |
| 81 | + fn test_interquartile_range_empty_list() { |
| 82 | + let numbers: Vec<f64> = vec![]; |
| 83 | + interquartile_range(&numbers); |
| 84 | + } |
| 85 | +} |
0 commit comments