forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdatetimes.py
2139 lines (1787 loc) · 74.6 KB
/
datetimes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
from datetime import datetime, time, timedelta
import textwrap
import warnings
import numpy as np
from pytz import utc
from pandas._libs import lib, tslib
from pandas._libs.tslibs import (
NaT, Timestamp, ccalendar, conversion, fields, iNaT, normalize_date,
resolution as libresolution, timezones)
import pandas.compat as compat
from pandas.errors import PerformanceWarning
from pandas.util._decorators import Appender
from pandas.core.dtypes.common import (
_INT64_DTYPE, _NS_DTYPE, is_categorical_dtype, is_datetime64_dtype,
is_datetime64_ns_dtype, is_datetime64tz_dtype, is_dtype_equal,
is_extension_type, is_float_dtype, is_object_dtype, is_period_dtype,
is_string_dtype, is_timedelta64_dtype, pandas_dtype)
from pandas.core.dtypes.dtypes import DatetimeTZDtype
from pandas.core.dtypes.generic import (
ABCDataFrame, ABCIndexClass, ABCPandasArray, ABCSeries)
from pandas.core.dtypes.missing import isna
from pandas.core import ops
from pandas.core.algorithms import checked_add_with_arr
from pandas.core.arrays import datetimelike as dtl
from pandas.core.arrays._ranges import generate_regular_range
import pandas.core.common as com
from pandas.tseries.frequencies import get_period_alias, to_offset
from pandas.tseries.offsets import Day, Tick
_midnight = time(0, 0)
# TODO(GH-24559): Remove warning, int_as_wall_time parameter.
_i8_message = """
Passing integer-dtype data and a timezone to DatetimeIndex. Integer values
will be interpreted differently in a future version of pandas. Previously,
these were viewed as datetime64[ns] values representing the wall time
*in the specified timezone*. In the future, these will be viewed as
datetime64[ns] values representing the wall time *in UTC*. This is similar
to a nanosecond-precision UNIX epoch. To accept the future behavior, use
pd.to_datetime(integer_data, utc=True).tz_convert(tz)
To keep the previous behavior, use
pd.to_datetime(integer_data).tz_localize(tz)
"""
def tz_to_dtype(tz):
"""
Return a datetime64[ns] dtype appropriate for the given timezone.
Parameters
----------
tz : tzinfo or None
Returns
-------
np.dtype or Datetime64TZDType
"""
if tz is None:
return _NS_DTYPE
else:
return DatetimeTZDtype(tz=tz)
def _to_M8(key, tz=None):
"""
Timestamp-like => dt64
"""
if not isinstance(key, Timestamp):
# this also converts strings
key = Timestamp(key)
if key.tzinfo is not None and tz is not None:
# Don't tz_localize(None) if key is already tz-aware
key = key.tz_convert(tz)
else:
key = key.tz_localize(tz)
return np.int64(conversion.pydt_to_i8(key)).view(_NS_DTYPE)
def _field_accessor(name, field, docstring=None):
def f(self):
values = self.asi8
if self.tz is not None and not timezones.is_utc(self.tz):
values = self._local_timestamps()
if field in self._bool_ops:
if field.endswith(('start', 'end')):
freq = self.freq
month_kw = 12
if freq:
kwds = freq.kwds
month_kw = kwds.get('startingMonth', kwds.get('month', 12))
result = fields.get_start_end_field(values, field,
self.freqstr, month_kw)
else:
result = fields.get_date_field(values, field)
# these return a boolean by-definition
return result
if field in self._object_ops:
result = fields.get_date_name_field(values, field)
result = self._maybe_mask_results(result, fill_value=None)
else:
result = fields.get_date_field(values, field)
result = self._maybe_mask_results(result, fill_value=None,
convert='float64')
return result
f.__name__ = name
f.__doc__ = "\n{}\n".format(docstring)
return property(f)
def _dt_array_cmp(cls, op):
"""
Wrap comparison operations to convert datetime-like to datetime64
"""
opname = '__{name}__'.format(name=op.__name__)
nat_result = True if opname == '__ne__' else False
def wrapper(self, other):
if isinstance(other, (ABCDataFrame, ABCSeries, ABCIndexClass)):
return NotImplemented
other = lib.item_from_zerodim(other)
if isinstance(other, (datetime, np.datetime64, compat.string_types)):
if isinstance(other, (datetime, np.datetime64)):
# GH#18435 strings get a pass from tzawareness compat
self._assert_tzawareness_compat(other)
try:
other = _to_M8(other, tz=self.tz)
except ValueError:
# string that cannot be parsed to Timestamp
return ops.invalid_comparison(self, other, op)
result = op(self.asi8, other.view('i8'))
if isna(other):
result.fill(nat_result)
elif lib.is_scalar(other) or np.ndim(other) == 0:
return ops.invalid_comparison(self, other, op)
elif len(other) != len(self):
raise ValueError("Lengths must match")
else:
if isinstance(other, list):
try:
other = type(self)._from_sequence(other)
except ValueError:
other = np.array(other, dtype=np.object_)
elif not isinstance(other, (np.ndarray, ABCIndexClass, ABCSeries,
DatetimeArray)):
# Following Timestamp convention, __eq__ is all-False
# and __ne__ is all True, others raise TypeError.
return ops.invalid_comparison(self, other, op)
if is_object_dtype(other):
# We have to use _comp_method_OBJECT_ARRAY instead of numpy
# comparison otherwise it would fail to raise when
# comparing tz-aware and tz-naive
with np.errstate(all='ignore'):
result = ops._comp_method_OBJECT_ARRAY(op,
self.astype(object),
other)
o_mask = isna(other)
elif not (is_datetime64_dtype(other) or
is_datetime64tz_dtype(other)):
# e.g. is_timedelta64_dtype(other)
return ops.invalid_comparison(self, other, op)
else:
self._assert_tzawareness_compat(other)
if isinstance(other, (ABCIndexClass, ABCSeries)):
other = other.array
if (is_datetime64_dtype(other) and
not is_datetime64_ns_dtype(other) or
not hasattr(other, 'asi8')):
# e.g. other.dtype == 'datetime64[s]'
# or an object-dtype ndarray
other = type(self)._from_sequence(other)
result = op(self.view('i8'), other.view('i8'))
o_mask = other._isnan
result = com.values_from_object(result)
# Make sure to pass an array to result[...]; indexing with
# Series breaks with older version of numpy
o_mask = np.array(o_mask)
if o_mask.any():
result[o_mask] = nat_result
if self._hasnans:
result[self._isnan] = nat_result
return result
return compat.set_function_name(wrapper, opname, cls)
class DatetimeArray(dtl.DatetimeLikeArrayMixin,
dtl.TimelikeOps,
dtl.DatelikeOps):
"""
Pandas ExtensionArray for tz-naive or tz-aware datetime data.
.. versionadded:: 0.24.0
Parameters
----------
values : Series, Index, DatetimeArray, ndarray
The datetime data.
For DatetimeArray `values` (or a Series or Index boxing one),
`dtype` and `freq` will be extracted from `values`, with
precedence given to
dtype : numpy.dtype or DatetimeTZDtype
Note that the only NumPy dtype allowed is 'datetime64[ns]'.
freq : str or Offset, optional
copy : bool, default False
Whether to copy the underlying array of values.
"""
_typ = "datetimearray"
_scalar_type = Timestamp
# define my properties & methods for delegation
_bool_ops = ['is_month_start', 'is_month_end',
'is_quarter_start', 'is_quarter_end', 'is_year_start',
'is_year_end', 'is_leap_year']
_object_ops = ['weekday_name', 'freq', 'tz']
_field_ops = ['year', 'month', 'day', 'hour', 'minute', 'second',
'weekofyear', 'week', 'weekday', 'dayofweek',
'dayofyear', 'quarter', 'days_in_month',
'daysinmonth', 'microsecond',
'nanosecond']
_other_ops = ['date', 'time', 'timetz']
_datetimelike_ops = _field_ops + _object_ops + _bool_ops + _other_ops
_datetimelike_methods = ['to_period', 'tz_localize',
'tz_convert',
'normalize', 'strftime', 'round', 'floor',
'ceil', 'month_name', 'day_name']
# dummy attribute so that datetime.__eq__(DatetimeArray) defers
# by returning NotImplemented
timetuple = None
# Needed so that Timestamp.__richcmp__(DateTimeArray) operates pointwise
ndim = 1
# ensure that operations with numpy arrays defer to our implementation
__array_priority__ = 1000
# -----------------------------------------------------------------
# Constructors
_attributes = ["freq", "tz"]
_dtype = None # type: Union[np.dtype, DatetimeTZDtype]
_freq = None
def __init__(self, values, dtype=_NS_DTYPE, freq=None, copy=False):
if isinstance(values, (ABCSeries, ABCIndexClass)):
values = values._values
inferred_freq = getattr(values, "_freq", None)
if isinstance(values, type(self)):
# validation
dtz = getattr(dtype, 'tz', None)
if dtz and values.tz is None:
dtype = DatetimeTZDtype(tz=dtype.tz)
elif dtz and values.tz:
if not timezones.tz_compare(dtz, values.tz):
msg = (
"Timezone of the array and 'dtype' do not match. "
"'{}' != '{}'"
)
raise TypeError(msg.format(dtz, values.tz))
elif values.tz:
dtype = values.dtype
# freq = validate_values_freq(values, freq)
if freq is None:
freq = values.freq
values = values._data
if not isinstance(values, np.ndarray):
msg = (
"Unexpected type '{}'. 'values' must be a DatetimeArray "
"ndarray, or Series or Index containing one of those."
)
raise ValueError(msg.format(type(values).__name__))
if values.dtype == 'i8':
# for compat with datetime/timedelta/period shared methods,
# we can sometimes get here with int64 values. These represent
# nanosecond UTC (or tz-naive) unix timestamps
values = values.view(_NS_DTYPE)
if values.dtype != _NS_DTYPE:
msg = (
"The dtype of 'values' is incorrect. Must be 'datetime64[ns]'."
" Got {} instead."
)
raise ValueError(msg.format(values.dtype))
dtype = _validate_dt64_dtype(dtype)
if freq == "infer":
msg = (
"Frequency inference not allowed in DatetimeArray.__init__. "
"Use 'pd.array()' instead."
)
raise ValueError(msg)
if copy:
values = values.copy()
if freq:
freq = to_offset(freq)
if getattr(dtype, 'tz', None):
# https://github.com/pandas-dev/pandas/issues/18595
# Ensure that we have a standard timezone for pytz objects.
# Without this, things like adding an array of timedeltas and
# a tz-aware Timestamp (with a tz specific to its datetime) will
# be incorrect(ish?) for the array as a whole
dtype = DatetimeTZDtype(tz=timezones.tz_standardize(dtype.tz))
self._data = values
self._dtype = dtype
self._freq = freq
if inferred_freq is None and freq is not None:
type(self)._validate_frequency(self, freq)
@classmethod
def _simple_new(cls, values, freq=None, dtype=_NS_DTYPE):
assert isinstance(values, np.ndarray)
if values.dtype == 'i8':
values = values.view(_NS_DTYPE)
result = object.__new__(cls)
result._data = values
result._freq = freq
result._dtype = dtype
return result
@classmethod
def _from_sequence(cls, data, dtype=None, copy=False,
tz=None, freq=None,
dayfirst=False, yearfirst=False, ambiguous='raise',
int_as_wall_time=False):
freq, freq_infer = dtl.maybe_infer_freq(freq)
subarr, tz, inferred_freq = sequence_to_dt64ns(
data, dtype=dtype, copy=copy, tz=tz,
dayfirst=dayfirst, yearfirst=yearfirst,
ambiguous=ambiguous, int_as_wall_time=int_as_wall_time)
freq, freq_infer = dtl.validate_inferred_freq(freq, inferred_freq,
freq_infer)
dtype = tz_to_dtype(tz)
result = cls._simple_new(subarr, freq=freq, dtype=dtype)
if inferred_freq is None and freq is not None:
# this condition precludes `freq_infer`
cls._validate_frequency(result, freq, ambiguous=ambiguous)
elif freq_infer:
# Set _freq directly to bypass duplicative _validate_frequency
# check.
result._freq = to_offset(result.inferred_freq)
return result
@classmethod
def _generate_range(cls, start, end, periods, freq, tz=None,
normalize=False, ambiguous='raise',
nonexistent='raise', closed=None):
periods = dtl.validate_periods(periods)
if freq is None and any(x is None for x in [periods, start, end]):
raise ValueError('Must provide freq argument if no data is '
'supplied')
if com.count_not_none(start, end, periods, freq) != 3:
raise ValueError('Of the four parameters: start, end, periods, '
'and freq, exactly three must be specified')
freq = to_offset(freq)
if start is not None:
start = Timestamp(start)
if end is not None:
end = Timestamp(end)
if start is None and end is None:
if closed is not None:
raise ValueError("Closed has to be None if not both of start"
"and end are defined")
if start is NaT or end is NaT:
raise ValueError("Neither `start` nor `end` can be NaT")
left_closed, right_closed = dtl.validate_endpoints(closed)
start, end, _normalized = _maybe_normalize_endpoints(start, end,
normalize)
tz = _infer_tz_from_endpoints(start, end, tz)
if tz is not None:
# Localize the start and end arguments
start = _maybe_localize_point(
start, getattr(start, 'tz', None), start, freq, tz
)
end = _maybe_localize_point(
end, getattr(end, 'tz', None), end, freq, tz
)
if freq is not None:
# We break Day arithmetic (fixed 24 hour) here and opt for
# Day to mean calendar day (23/24/25 hour). Therefore, strip
# tz info from start and day to avoid DST arithmetic
if isinstance(freq, Day):
if start is not None:
start = start.tz_localize(None)
if end is not None:
end = end.tz_localize(None)
# TODO: consider re-implementing _cached_range; GH#17914
values, _tz = generate_regular_range(start, end, periods, freq)
index = cls._simple_new(values, freq=freq, dtype=tz_to_dtype(_tz))
if tz is not None and index.tz is None:
arr = conversion.tz_localize_to_utc(
index.asi8,
tz, ambiguous=ambiguous, nonexistent=nonexistent)
index = cls(arr)
# index is localized datetime64 array -> have to convert
# start/end as well to compare
if start is not None:
start = start.tz_localize(tz).asm8
if end is not None:
end = end.tz_localize(tz).asm8
else:
# Create a linearly spaced date_range in local time
# Nanosecond-granularity timestamps aren't always correctly
# representable with doubles, so we limit the range that we
# pass to np.linspace as much as possible
arr = np.linspace(
0, end.value - start.value,
periods, dtype='int64') + start.value
dtype = tz_to_dtype(tz)
index = cls._simple_new(
arr.astype('M8[ns]', copy=False), freq=None, dtype=dtype
)
if not left_closed and len(index) and index[0] == start:
index = index[1:]
if not right_closed and len(index) and index[-1] == end:
index = index[:-1]
dtype = tz_to_dtype(tz)
return cls._simple_new(index.asi8, freq=freq, dtype=dtype)
# -----------------------------------------------------------------
# DatetimeLike Interface
def _unbox_scalar(self, value):
if not isinstance(value, self._scalar_type) and value is not NaT:
raise ValueError("'value' should be a Timestamp.")
if not isna(value):
self._check_compatible_with(value)
return value.value
def _scalar_from_string(self, value):
return Timestamp(value, tz=self.tz)
def _check_compatible_with(self, other):
if other is NaT:
return
if not timezones.tz_compare(self.tz, other.tz):
raise ValueError("Timezones don't match. '{own} != {other}'"
.format(own=self.tz, other=other.tz))
def _maybe_clear_freq(self):
self._freq = None
# -----------------------------------------------------------------
# Descriptive Properties
@property
def _box_func(self):
return lambda x: Timestamp(x, freq=self.freq, tz=self.tz)
@property
def dtype(self):
# type: () -> Union[np.dtype, DatetimeTZDtype]
"""
The dtype for the DatetimeArray.
Returns
-------
numpy.dtype or DatetimeTZDtype
If the values are tz-naive, then ``np.dtype('datetime64[ns]')``
is returned.
If the values are tz-aware, then the ``DatetimeTZDtype``
is returned.
"""
return self._dtype
@property
def tz(self):
"""
Return timezone, if any.
Returns
-------
datetime.tzinfo, pytz.tzinfo.BaseTZInfo, dateutil.tz.tz.tzfile, or None
Returns None when the array is tz-naive.
"""
# GH 18595
return getattr(self.dtype, "tz", None)
@tz.setter
def tz(self, value):
# GH 3746: Prevent localizing or converting the index by setting tz
raise AttributeError("Cannot directly set timezone. Use tz_localize() "
"or tz_convert() as appropriate")
@property
def tzinfo(self):
"""
Alias for tz attribute
"""
return self.tz
@property # NB: override with cache_readonly in immutable subclasses
def _timezone(self):
"""
Comparable timezone both for pytz / dateutil
"""
return timezones.get_timezone(self.tzinfo)
@property # NB: override with cache_readonly in immutable subclasses
def is_normalized(self):
"""
Returns True if all of the dates are at midnight ("no time")
"""
return conversion.is_date_array_normalized(self.asi8, self.tz)
@property # NB: override with cache_readonly in immutable subclasses
def _resolution(self):
return libresolution.resolution(self.asi8, self.tz)
# ----------------------------------------------------------------
# Array-Like / EA-Interface Methods
def __array__(self, dtype=None):
if dtype is None and self.tz:
# The default for tz-aware is object, to preserve tz info
dtype = object
return super(DatetimeArray, self).__array__(dtype=dtype)
def __iter__(self):
"""
Return an iterator over the boxed values
Yields
-------
tstamp : Timestamp
"""
# convert in chunks of 10k for efficiency
data = self.asi8
length = len(self)
chunksize = 10000
chunks = int(length / chunksize) + 1
for i in range(chunks):
start_i = i * chunksize
end_i = min((i + 1) * chunksize, length)
converted = tslib.ints_to_pydatetime(data[start_i:end_i],
tz=self.tz, freq=self.freq,
box="timestamp")
for v in converted:
yield v
def astype(self, dtype, copy=True):
# We handle
# --> datetime
# --> period
# DatetimeLikeArrayMixin Super handles the rest.
dtype = pandas_dtype(dtype)
if (is_datetime64_ns_dtype(dtype) and
not is_dtype_equal(dtype, self.dtype)):
# GH#18951: datetime64_ns dtype but not equal means different tz
new_tz = getattr(dtype, 'tz', None)
if getattr(self.dtype, 'tz', None) is None:
return self.tz_localize(new_tz)
result = self.tz_convert(new_tz)
if new_tz is None:
# Do we want .astype('datetime64[ns]') to be an ndarray.
# The astype in Block._astype expects this to return an
# ndarray, but we could maybe work around it there.
result = result._data
return result
elif is_datetime64tz_dtype(self.dtype) and is_dtype_equal(self.dtype,
dtype):
if copy:
return self.copy()
return self
elif is_period_dtype(dtype):
return self.to_period(freq=dtype.freq)
return dtl.DatetimeLikeArrayMixin.astype(self, dtype, copy)
# ----------------------------------------------------------------
# ExtensionArray Interface
@Appender(dtl.DatetimeLikeArrayMixin._validate_fill_value.__doc__)
def _validate_fill_value(self, fill_value):
if isna(fill_value):
fill_value = iNaT
elif isinstance(fill_value, (datetime, np.datetime64)):
self._assert_tzawareness_compat(fill_value)
fill_value = Timestamp(fill_value).value
else:
raise ValueError("'fill_value' should be a Timestamp. "
"Got '{got}'.".format(got=fill_value))
return fill_value
# -----------------------------------------------------------------
# Rendering Methods
def _format_native_types(self, na_rep='NaT', date_format=None, **kwargs):
from pandas.io.formats.format import _get_format_datetime64_from_values
fmt = _get_format_datetime64_from_values(self, date_format)
return tslib.format_array_from_datetime(self.asi8,
tz=self.tz,
format=fmt,
na_rep=na_rep)
# -----------------------------------------------------------------
# Comparison Methods
_create_comparison_method = classmethod(_dt_array_cmp)
def _has_same_tz(self, other):
zzone = self._timezone
# vzone sholdn't be None if value is non-datetime like
if isinstance(other, np.datetime64):
# convert to Timestamp as np.datetime64 doesn't have tz attr
other = Timestamp(other)
vzone = timezones.get_timezone(getattr(other, 'tzinfo', '__no_tz__'))
return zzone == vzone
def _assert_tzawareness_compat(self, other):
# adapted from _Timestamp._assert_tzawareness_compat
other_tz = getattr(other, 'tzinfo', None)
if is_datetime64tz_dtype(other):
# Get tzinfo from Series dtype
other_tz = other.dtype.tz
if other is NaT:
# pd.NaT quacks both aware and naive
pass
elif self.tz is None:
if other_tz is not None:
raise TypeError('Cannot compare tz-naive and tz-aware '
'datetime-like objects.')
elif other_tz is None:
raise TypeError('Cannot compare tz-naive and tz-aware '
'datetime-like objects')
# -----------------------------------------------------------------
# Arithmetic Methods
def _sub_datetime_arraylike(self, other):
"""subtract DatetimeArray/Index or ndarray[datetime64]"""
if len(self) != len(other):
raise ValueError("cannot add indices of unequal length")
if isinstance(other, np.ndarray):
assert is_datetime64_dtype(other)
other = type(self)(other)
if not self._has_same_tz(other):
# require tz compat
raise TypeError("{cls} subtraction must have the same "
"timezones or no timezones"
.format(cls=type(self).__name__))
self_i8 = self.asi8
other_i8 = other.asi8
new_values = checked_add_with_arr(self_i8, -other_i8,
arr_mask=self._isnan)
if self._hasnans or other._hasnans:
mask = (self._isnan) | (other._isnan)
new_values[mask] = iNaT
return new_values.view('timedelta64[ns]')
def _add_offset(self, offset):
assert not isinstance(offset, Tick)
try:
if self.tz is not None:
values = self.tz_localize(None)
else:
values = self
result = offset.apply_index(values)
if self.tz is not None:
result = result.tz_localize(self.tz)
except NotImplementedError:
warnings.warn("Non-vectorized DateOffset being applied to Series "
"or DatetimeIndex", PerformanceWarning)
result = self.astype('O') + offset
return type(self)._from_sequence(result, freq='infer')
def _sub_datetimelike_scalar(self, other):
# subtract a datetime from myself, yielding a ndarray[timedelta64[ns]]
assert isinstance(other, (datetime, np.datetime64))
assert other is not NaT
other = Timestamp(other)
if other is NaT:
return self - NaT
if not self._has_same_tz(other):
# require tz compat
raise TypeError("Timestamp subtraction must have the same "
"timezones or no timezones")
i8 = self.asi8
result = checked_add_with_arr(i8, -other.value,
arr_mask=self._isnan)
result = self._maybe_mask_results(result)
return result.view('timedelta64[ns]')
def _add_delta(self, delta):
"""
Add a timedelta-like, Tick, or TimedeltaIndex-like object
to self, yielding a new DatetimeArray
Parameters
----------
other : {timedelta, np.timedelta64, Tick,
TimedeltaIndex, ndarray[timedelta64]}
Returns
-------
result : DatetimeArray
"""
new_values = super(DatetimeArray, self)._add_delta(delta)
return type(self)._from_sequence(new_values, tz=self.tz, freq='infer')
# -----------------------------------------------------------------
# Timezone Conversion and Localization Methods
def _local_timestamps(self):
"""
Convert to an i8 (unix-like nanosecond timestamp) representation
while keeping the local timezone and not using UTC.
This is used to calculate time-of-day information as if the timestamps
were timezone-naive.
"""
return conversion.tz_convert(self.asi8, utc, self.tz)
def tz_convert(self, tz):
"""
Convert tz-aware Datetime Array/Index from one time zone to another.
Parameters
----------
tz : string, pytz.timezone, dateutil.tz.tzfile or None
Time zone for time. Corresponding timestamps would be converted
to this time zone of the Datetime Array/Index. A `tz` of None will
convert to UTC and remove the timezone information.
Returns
-------
normalized : same type as self
Raises
------
TypeError
If Datetime Array/Index is tz-naive.
See Also
--------
DatetimeIndex.tz : A timezone that has a variable offset from UTC.
DatetimeIndex.tz_localize : Localize tz-naive DatetimeIndex to a
given time zone, or remove timezone from a tz-aware DatetimeIndex.
Examples
--------
With the `tz` parameter, we can change the DatetimeIndex
to other time zones:
>>> dti = pd.date_range(start='2014-08-01 09:00',
... freq='H', periods=3, tz='Europe/Berlin')
>>> dti
DatetimeIndex(['2014-08-01 09:00:00+02:00',
'2014-08-01 10:00:00+02:00',
'2014-08-01 11:00:00+02:00'],
dtype='datetime64[ns, Europe/Berlin]', freq='H')
>>> dti.tz_convert('US/Central')
DatetimeIndex(['2014-08-01 02:00:00-05:00',
'2014-08-01 03:00:00-05:00',
'2014-08-01 04:00:00-05:00'],
dtype='datetime64[ns, US/Central]', freq='H')
With the ``tz=None``, we can remove the timezone (after converting
to UTC if necessary):
>>> dti = pd.date_range(start='2014-08-01 09:00',freq='H',
... periods=3, tz='Europe/Berlin')
>>> dti
DatetimeIndex(['2014-08-01 09:00:00+02:00',
'2014-08-01 10:00:00+02:00',
'2014-08-01 11:00:00+02:00'],
dtype='datetime64[ns, Europe/Berlin]', freq='H')
>>> dti.tz_convert(None)
DatetimeIndex(['2014-08-01 07:00:00',
'2014-08-01 08:00:00',
'2014-08-01 09:00:00'],
dtype='datetime64[ns]', freq='H')
"""
tz = timezones.maybe_get_tz(tz)
if self.tz is None:
# tz naive, use tz_localize
raise TypeError('Cannot convert tz-naive timestamps, use '
'tz_localize to localize')
# No conversion since timestamps are all UTC to begin with
dtype = tz_to_dtype(tz)
return self._simple_new(self.asi8, dtype=dtype, freq=self.freq)
def tz_localize(self, tz, ambiguous='raise', nonexistent='raise',
errors=None):
"""
Localize tz-naive Datetime Array/Index to tz-aware
Datetime Array/Index.
This method takes a time zone (tz) naive Datetime Array/Index object
and makes this time zone aware. It does not move the time to another
time zone.
Time zone localization helps to switch from time zone aware to time
zone unaware objects.
Parameters
----------
tz : string, pytz.timezone, dateutil.tz.tzfile or None
Time zone to convert timestamps to. Passing ``None`` will
remove the time zone information preserving local time.
ambiguous : 'infer', 'NaT', bool array, default 'raise'
When clocks moved backward due to DST, ambiguous times may arise.
For example in Central European Time (UTC+01), when going from
03:00 DST to 02:00 non-DST, 02:30:00 local time occurs both at
00:30:00 UTC and at 01:30:00 UTC. In such a situation, the
`ambiguous` parameter dictates how ambiguous times should be
handled.
- 'infer' will attempt to infer fall dst-transition hours based on
order
- bool-ndarray where True signifies a DST time, False signifies a
non-DST time (note that this flag is only applicable for
ambiguous times)
- 'NaT' will return NaT where there are ambiguous times
- 'raise' will raise an AmbiguousTimeError if there are ambiguous
times
nonexistent : 'shift_forward', 'shift_backward, 'NaT', timedelta,
default 'raise'
A nonexistent time does not exist in a particular timezone
where clocks moved forward due to DST.
- 'shift_forward' will shift the nonexistent time forward to the
closest existing time
- 'shift_backward' will shift the nonexistent time backward to the
closest existing time
- 'NaT' will return NaT where there are nonexistent times
- timedelta objects will shift nonexistent times by the timedelta
- 'raise' will raise an NonExistentTimeError if there are
nonexistent times
.. versionadded:: 0.24.0
errors : {'raise', 'coerce'}, default None
- 'raise' will raise a NonExistentTimeError if a timestamp is not
valid in the specified time zone (e.g. due to a transition from
or to DST time). Use ``nonexistent='raise'`` instead.
- 'coerce' will return NaT if the timestamp can not be converted
to the specified time zone. Use ``nonexistent='NaT'`` instead.
.. deprecated:: 0.24.0
Returns
-------
result : same type as self
Array/Index converted to the specified time zone.
Raises
------
TypeError
If the Datetime Array/Index is tz-aware and tz is not None.
See Also
--------
DatetimeIndex.tz_convert : Convert tz-aware DatetimeIndex from
one time zone to another.
Examples
--------
>>> tz_naive = pd.date_range('2018-03-01 09:00', periods=3)
>>> tz_naive
DatetimeIndex(['2018-03-01 09:00:00', '2018-03-02 09:00:00',
'2018-03-03 09:00:00'],
dtype='datetime64[ns]', freq='D')
Localize DatetimeIndex in US/Eastern time zone:
>>> tz_aware = tz_naive.tz_localize(tz='US/Eastern')
>>> tz_aware
DatetimeIndex(['2018-03-01 09:00:00-05:00',
'2018-03-02 09:00:00-05:00',
'2018-03-03 09:00:00-05:00'],
dtype='datetime64[ns, US/Eastern]', freq='D')
With the ``tz=None``, we can remove the time zone information
while keeping the local time (not converted to UTC):
>>> tz_aware.tz_localize(None)
DatetimeIndex(['2018-03-01 09:00:00', '2018-03-02 09:00:00',
'2018-03-03 09:00:00'],
dtype='datetime64[ns]', freq='D')
Be careful with DST changes. When there is sequential data, pandas can
infer the DST time:
>>> s = pd.to_datetime(pd.Series([
... '2018-10-28 01:30:00',
... '2018-10-28 02:00:00',
... '2018-10-28 02:30:00',
... '2018-10-28 02:00:00',
... '2018-10-28 02:30:00',
... '2018-10-28 03:00:00',
... '2018-10-28 03:30:00']))
>>> s.dt.tz_localize('CET', ambiguous='infer')
2018-10-28 01:30:00+02:00 0
2018-10-28 02:00:00+02:00 1
2018-10-28 02:30:00+02:00 2
2018-10-28 02:00:00+01:00 3
2018-10-28 02:30:00+01:00 4
2018-10-28 03:00:00+01:00 5
2018-10-28 03:30:00+01:00 6
dtype: int64
In some cases, inferring the DST is impossible. In such cases, you can
pass an ndarray to the ambiguous parameter to set the DST explicitly
>>> s = pd.to_datetime(pd.Series([
... '2018-10-28 01:20:00',
... '2018-10-28 02:36:00',
... '2018-10-28 03:46:00']))
>>> s.dt.tz_localize('CET', ambiguous=np.array([True, True, False]))
0 2018-10-28 01:20:00+02:00
1 2018-10-28 02:36:00+02:00
2 2018-10-28 03:46:00+01:00
dtype: datetime64[ns, CET]
If the DST transition causes nonexistent times, you can shift these
dates forward or backwards with a timedelta object or `'shift_forward'`
or `'shift_backwards'`.
>>> s = pd.to_datetime(pd.Series([
... '2015-03-29 02:30:00',
... '2015-03-29 03:30:00']))
>>> s.dt.tz_localize('Europe/Warsaw', nonexistent='shift_forward')
0 2015-03-29 03:00:00+02:00
1 2015-03-29 03:30:00+02:00
dtype: datetime64[ns, 'Europe/Warsaw']