forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathbase.py
413 lines (341 loc) · 14.2 KB
/
base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
"""An interface for extending pandas with custom arrays."""
import numpy as np
from pandas.errors import AbstractMethodError
_not_implemented_message = "{} does not implement {}."
class ExtensionArray(object):
"""Abstract base class for custom 1-D array types.
pandas will recognize instances of this class as proper arrays
with a custom type and will not attempt to coerce them to objects. They
may be stored directly inside a :class:`DataFrame` or :class:`Series`.
Notes
-----
The interface includes the following abstract methods that must be
implemented by subclasses:
* _constructor_from_sequence
* __getitem__
* __len__
* dtype
* nbytes
* isna
* take
* copy
* _concat_same_type
Some additional methods are available to satisfy pandas' internal, private
block API.
* _can_hold_na
* _formatting_values
This class does not inherit from 'abc.ABCMeta' for performance reasons.
Methods and properties required by the interface raise
``pandas.errors.AbstractMethodError`` and no ``register`` method is
provided for registering virtual subclasses.
ExtensionArrays are limited to 1 dimension.
They may be backed by none, one, or many NumPy ararys. For example,
``pandas.Categorical`` is an extension array backed by two arrays,
one for codes and one for categories. An array of IPv6 address may
be backed by a NumPy structured array with two fields, one for the
lower 64 bits and one for the upper 64 bits. Or they may be backed
by some other storage type, like Python lists. Pandas makes no
assumptions on how the data are stored, just that it can be converted
to a NumPy array.
Extension arrays should be able to be constructed with instances of
the class, i.e. ``ExtensionArray(extension_array)`` should return
an instance, not error.
"""
# '_typ' is for pandas.core.dtypes.generic.ABCExtensionArray.
# Don't override this.
_typ = 'extension'
# ------------------------------------------------------------------------
# Constructors
# ------------------------------------------------------------------------
@classmethod
def _constructor_from_sequence(cls, scalars):
"""Construct a new ExtensionArray from a sequence of scalars.
Parameters
----------
scalars : Sequence
Each element will be an instance of the scalar type for this
array, ``cls.dtype.type``.
Returns
-------
ExtensionArray
"""
raise AbstractMethodError(cls)
# ------------------------------------------------------------------------
# Must be a Sequence
# ------------------------------------------------------------------------
def __getitem__(self, item):
# type (Any) -> Any
"""Select a subset of self.
Parameters
----------
item : int, slice, or ndarray
* int: The position in 'self' to get.
* slice: A slice object, where 'start', 'stop', and 'step' are
integers or None
* ndarray: A 1-d boolean NumPy ndarray the same length as 'self'
Returns
-------
item : scalar or ExtensionArray
Notes
-----
For scalar ``item``, return a scalar value suitable for the array's
type. This should be an instance of ``self.dtype.type``.
For slice ``key``, return an instance of ``ExtensionArray``, even
if the slice is length 0 or 1.
For a boolean mask, return an instance of ``ExtensionArray``, filtered
to the values where ``item`` is True.
"""
raise AbstractMethodError(self)
def __setitem__(self, key, value):
# type: (Union[int, np.ndarray], Any) -> None
"""Set one or more values inplace.
This method is not required to satisfy the pandas extension array
interface.
Parameters
----------
key : int, ndarray, or slice
When called from, e.g. ``Series.__setitem__``, ``key`` will be
one of
* scalar int
* ndarray of integers.
* boolean ndarray
* slice object
value : ExtensionDtype.type, Sequence[ExtensionDtype.type], or object
value or values to be set of ``key``.
Returns
-------
None
"""
# Some notes to the ExtensionArray implementor who may have ended up
# here. While this method is not required for the interface, if you
# *do* choose to implement __setitem__, then some semantics should be
# observed:
#
# * Setting multiple values : ExtensionArrays should support setting
# multiple values at once, 'key' will be a sequence of integers and
# 'value' will be a same-length sequence.
#
# * Broadcasting : For a sequence 'key' and a scalar 'value',
# each position in 'key' should be set to 'value'.
#
# * Coercion : Most users will expect basic coercion to work. For
# example, a string like '2018-01-01' is coerced to a datetime
# when setting on a datetime64ns array. In general, if the
# __init__ method coerces that value, then so should __setitem__
raise NotImplementedError(_not_implemented_message.format(
type(self), '__setitem__')
)
def __len__(self):
"""Length of this array
Returns
-------
length : int
"""
# type: () -> int
raise AbstractMethodError(self)
def __iter__(self):
"""Iterate over elements of the array.
"""
# This needs to be implemented so that pandas recognizes extension
# arrays as list-like. The default implementation makes successive
# calls to ``__getitem__``, which may be slower than necessary.
for i in range(len(self)):
yield self[i]
# ------------------------------------------------------------------------
# Required attributes
# ------------------------------------------------------------------------
@property
def dtype(self):
# type: () -> ExtensionDtype
"""An instance of 'ExtensionDtype'."""
raise AbstractMethodError(self)
@property
def shape(self):
# type: () -> Tuple[int, ...]
return (len(self),)
@property
def ndim(self):
# type: () -> int
"""Extension Arrays are only allowed to be 1-dimensional."""
return 1
@property
def nbytes(self):
# type: () -> int
"""The number of bytes needed to store this object in memory.
"""
# If this is expensive to compute, return an approximate lower bound
# on the number of bytes needed.
raise AbstractMethodError(self)
# ------------------------------------------------------------------------
# Additional Methods
# ------------------------------------------------------------------------
def astype(self, dtype, copy=True):
"""Cast to a NumPy array with 'dtype'.
Parameters
----------
dtype : str or dtype
Typecode or data-type to which the array is cast.
copy : bool, default True
Whether to copy the data, even if not necessary. If False,
a copy is made only if the old dtype does not match the
new dtype.
Returns
-------
array : ndarray
NumPy ndarray with 'dtype' for its dtype.
"""
return np.array(self, dtype=dtype, copy=copy)
def isna(self):
# type: () -> np.ndarray
"""Boolean NumPy array indicating if each value is missing.
This should return a 1-D array the same length as 'self'.
"""
raise AbstractMethodError(self)
def fillna(self, value=None, method=None, limit=None):
""" Fill NA/NaN values using the specified method.
Parameters
----------
value : scalar, array-like
If a scalar value is passed it is used to fill all missing values.
Alternatively, an array-like 'value' can be given. It's expected
that the array-like have the same length as 'self'.
method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None
Method to use for filling holes in reindexed Series
pad / ffill: propagate last valid observation forward to next valid
backfill / bfill: use NEXT valid observation to fill gap
limit : int, default None
If method is specified, this is the maximum number of consecutive
NaN values to forward/backward fill. In other words, if there is
a gap with more than this number of consecutive NaNs, it will only
be partially filled. If method is not specified, this is the
maximum number of entries along the entire axis where NaNs will be
filled.
Returns
-------
filled : ExtensionArray with NA/NaN filled
"""
from pandas.api.types import is_scalar
from pandas.util._validators import validate_fillna_kwargs
from pandas.core.missing import pad_1d, backfill_1d
from pandas.core.dtypes.common import _ensure_platform_int
from pandas._libs.tslib import iNaT
value, method = validate_fillna_kwargs(value, method)
mask = self.isna()
if not is_scalar(value):
if len(value) != len(self):
raise ValueError("Length of 'value' does not match. Got ({}) "
" expected {}".format(len(value), len(self)))
value = value[mask]
if mask.any():
if method is not None:
# ffill / bfill
# The basic idea is to create an array of integer positions.
# Internally, we use iNaT and the datetime filling routines
# to avoid floating-point NaN. Once filled, we take on `self`
# to get the actual values.
func = pad_1d if method == 'pad' else backfill_1d
idx = np.arange(len(self), dtype='int64')
idx[mask] = iNaT
idx = _ensure_platform_int(func(idx, mask=mask,
limit=limit,
dtype='datetime64[ns]'))
idx[idx == iNaT] = -1 # missing value marker for take.
new_values = self.take(idx)
else:
# fill with value
new_values = self.copy()
new_values[mask] = value
else:
new_values = self.copy()
return new_values
# ------------------------------------------------------------------------
# Indexing methods
# ------------------------------------------------------------------------
def take(self, indexer, allow_fill=True, fill_value=None):
# type: (Sequence[int], bool, Optional[Any]) -> ExtensionArray
"""Take elements from an array.
Parameters
----------
indexer : sequence of integers
indices to be taken. -1 is used to indicate values
that are missing.
allow_fill : bool, default True
If False, indexer is assumed to contain no -1 values so no filling
will be done. This short-circuits computation of a mask. Result is
undefined if allow_fill == False and -1 is present in indexer.
fill_value : any, default None
Fill value to replace -1 values with. If applicable, this should
use the sentinel missing value for this type.
Notes
-----
This should follow pandas' semantics where -1 indicates missing values.
Positions where indexer is ``-1`` should be filled with the missing
value for this type.
This is called by ``Series.__getitem__``, ``.loc``, ``iloc``, when the
indexer is a sequence of values.
Examples
--------
Suppose the extension array is backed by a NumPy array stored as
``self.data``. Then ``take`` may be written as
.. code-block:: python
def take(self, indexer, allow_fill=True, fill_value=None):
indexer = np.asarray(indexer)
mask = indexer == -1
result = self.data.take(indexer)
result[mask] = np.nan # NA for this type
return type(self)(result)
See Also
--------
numpy.take
"""
raise AbstractMethodError(self)
def copy(self, deep=False):
# type: (bool) -> ExtensionArray
"""Return a copy of the array.
Parameters
----------
deep : bool, default False
Also copy the underlying data backing this array.
Returns
-------
ExtensionArray
"""
raise AbstractMethodError(self)
# ------------------------------------------------------------------------
# Block-related methods
# ------------------------------------------------------------------------
def _formatting_values(self):
# type: () -> np.ndarray
# At the moment, this has to be an array since we use result.dtype
"""An array of values to be printed in, e.g. the Series repr"""
return np.array(self)
@classmethod
def _concat_same_type(cls, to_concat):
# type: (Sequence[ExtensionArray]) -> ExtensionArray
"""Concatenate multiple array
Parameters
----------
to_concat : sequence of this type
Returns
-------
ExtensionArray
"""
raise AbstractMethodError(cls)
@property
def _can_hold_na(self):
# type: () -> bool
"""Whether your array can hold missing values. True by default.
Notes
-----
Setting this to false will optimize some operations like fillna.
"""
return True
@property
def _ndarray_values(self):
# type: () -> np.ndarray
"""Internal pandas method for lossy conversion to a NumPy ndarray.
This method is not part of the pandas interface.
The expectation is that this is cheap to compute, and is primarily
used for interacting with our indexers.
"""
return np.array(self)