-
Notifications
You must be signed in to change notification settings - Fork 95
/
Copy pathadversarial_training.py
611 lines (514 loc) · 21 KB
/
adversarial_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
"""
Adversarial training is able to improve the performance of an ensemble by
treating adversarial samples as the augmented training data. The fast
gradient sign method (FGSM) is used to generate adversarial samples.
Reference:
B. Lakshminarayanan, A. Pritzel, C. Blundell., Simple and Scalable
Predictive Uncertainty Estimation using Deep Ensembles, NIPS 2017.
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import warnings
from joblib import Parallel, delayed
from ._base import BaseModule, BaseClassifier, BaseRegressor
from ._base import torchensemble_model_doc
from .utils import io
from .utils import set_module
from .utils import operator as op
__all__ = ["AdversarialTrainingClassifier", "AdversarialTrainingRegressor"]
__fit_doc = """
Parameters
----------
train_loader : torch.utils.data.DataLoader
A :mod:`torch.utils.data.DataLoader` container that contains the
training data.
epochs : int, default=100
The number of training epochs.
epsilon : float, default=0.01
The step used to generate adversarial samples in the fast gradient
sign method (FGSM), which should be in the range [0, 1].
log_interval : int, default=100
The number of batches to wait before logging the training status.
test_loader : torch.utils.data.DataLoader, default=None
A :mod:`torch.utils.data.DataLoader` container that contains the
evaluating data.
- If ``None``, no validation is conducted after each training
epoch.
- If not ``None``, the ensemble will be evaluated on this
dataloader after each training epoch.
save_model : bool, default=True
Specify whether to save the model parameters.
- If test_loader is ``None``, the ensemble fully trained will be
saved.
- If test_loader is not ``None``, the ensemble with the best
validation performance will be saved.
save_dir : string, default=None
Specify where to save the model parameters.
- If ``None``, the model will be saved in the current directory.
- If not ``None``, the model will be saved in the specified
directory: ``save_dir``.
"""
def _adversarial_training_model_doc(header, item="fit"):
"""
Decorator on obtaining documentation for different adversarial training
models.
"""
def get_doc(item):
"""Return selected item"""
__doc = {"fit": __fit_doc}
return __doc[item]
def adddoc(cls):
doc = [header + "\n\n"]
doc.extend(get_doc(item))
cls.__doc__ = "".join(doc)
return cls
return adddoc
def _parallel_fit_per_epoch(
train_loader,
epsilon,
estimator,
cur_lr,
optimizer,
criterion,
idx,
epoch,
log_interval,
device,
is_classification,
):
"""
Private function used to fit base estimators in parallel.
WARNING: Parallelization when fitting large base estimators may cause
out-of-memory error.
"""
if cur_lr:
# Parallelization corrupts the binding between optimizer and scheduler
set_module.update_lr(optimizer, cur_lr)
for batch_idx, elem in enumerate(train_loader):
data, target = io.split_data_target(elem, device)
batch_size = data[0].size(0)
for tensor in data:
tensor.requires_grad = True
# Get adversarial samples
_output = estimator(*data)
_loss = criterion(_output, target)
_loss.backward()
data_grad = [tensor.grad.data for tensor in data]
adv_data = _get_fgsm_samples(data, epsilon, data_grad)
# Compute the training loss
optimizer.zero_grad()
org_output = estimator(*data)
adv_output = estimator(*adv_data)
loss = criterion(org_output, target) + criterion(adv_output, target)
loss.backward()
optimizer.step()
# Print training status
if batch_idx % log_interval == 0:
# Classification
if is_classification:
_, predicted = torch.max(org_output.data, 1)
correct = (predicted == target).sum().item()
msg = (
"Estimator: {:03d} | Epoch: {:03d} | Batch: {:03d}"
" | Loss: {:.5f} | Correct: {:d}/{:d}"
)
print(
msg.format(
idx, epoch, batch_idx, loss, correct, batch_size
)
)
# Regression
else:
msg = (
"Estimator: {:03d} | Epoch: {:03d} | Batch: {:03d}"
" | Loss: {:.5f}"
)
print(msg.format(idx, epoch, batch_idx, loss))
return estimator, optimizer, loss
def _get_fgsm_samples(sample_list, epsilon, sample_grad_list):
"""
Private functions used to generate adversarial samples with fast gradient
sign method (FGSM).
"""
perturbed_sample_list = []
for sample, sample_grad in zip(sample_list, sample_grad_list):
# Check the input range of `sample`
min_value, max_value = torch.min(sample), torch.max(sample)
if not 0 <= min_value < max_value <= 1:
msg = (
"The input range of samples passed to adversarial training"
" should be in the range [0, 1], but got [{:.3f}, {:.3f}]"
" instead."
)
raise ValueError(msg.format(min_value, max_value))
sign_sample_grad = sample_grad.sign()
perturbed_sample = sample + epsilon * sign_sample_grad
perturbed_sample = torch.clamp(perturbed_sample, 0, 1)
perturbed_sample_list.append(perturbed_sample)
return perturbed_sample_list
class _BaseAdversarialTraining(BaseModule):
def _validate_parameters(self, epochs, epsilon, log_interval):
"""Validate hyper-parameters on training the ensemble."""
if not epochs > 0:
msg = (
"The number of training epochs = {} should be strictly"
" positive."
)
self.logger.error(msg.format(epochs))
raise ValueError(msg.format(epochs))
if not 0 < epsilon <= 1:
msg = (
"The step used to generate adversarial samples in FGSM"
" should be in the range (0, 1], but got {} instead."
)
self.logger.error(msg.format(epsilon))
raise ValueError(msg.format(epsilon))
if not log_interval > 0:
msg = (
"The number of batches to wait before printting the"
" training status should be strictly positive, but got {}"
" instead."
)
self.logger.error(msg.format(log_interval))
raise ValueError(msg.format(log_interval))
@torchensemble_model_doc(
"""Implementation on the AdversarialTrainingClassifier.""", # noqa: E501
"model",
)
class AdversarialTrainingClassifier(_BaseAdversarialTraining, BaseClassifier):
@torchensemble_model_doc(
"""Implementation on the data forwarding in AdversarialTrainingClassifier.""", # noqa: E501
"classifier_forward",
)
def forward(self, *x):
# Take the average over class distributions from all base estimators.
outputs = [
F.softmax(op.unsqueeze_tensor(estimator(*x)), dim=1)
for estimator in self.estimators_
]
proba = op.average(outputs)
return proba
@torchensemble_model_doc(
"""Set the attributes on optimizer for AdversarialTrainingClassifier.""", # noqa: E501
"set_optimizer",
)
def set_optimizer(self, optimizer_name, **kwargs):
super().set_optimizer(optimizer_name, **kwargs)
@torchensemble_model_doc(
"""Set the attributes on scheduler for AdversarialTrainingClassifier.""", # noqa: E501
"set_scheduler",
)
def set_scheduler(self, scheduler_name, **kwargs):
super().set_scheduler(scheduler_name, **kwargs)
@torchensemble_model_doc(
"""Set the training criterion for AdversarialTrainingClassifier.""",
"set_criterion",
)
def set_criterion(self, criterion):
super().set_criterion(criterion)
@_adversarial_training_model_doc(
"""Implementation on the training stage of AdversarialTrainingClassifier.""", # noqa: E501
"fit",
)
def fit(
self,
train_loader,
epochs=100,
epsilon=0.5,
log_interval=100,
test_loader=None,
save_model=True,
save_dir=None,
):
self._validate_parameters(epochs, epsilon, log_interval)
self.n_outputs = self._decide_n_outputs(train_loader)
# Instantiate a pool of base estimators, optimizers, and schedulers.
estimators = []
for _ in range(self.n_estimators):
estimators.append(self._make_estimator())
optimizers = []
for i in range(self.n_estimators):
optimizers.append(
set_module.set_optimizer(
estimators[i], self.optimizer_name, **self.optimizer_args
)
)
if self.use_scheduler_:
scheduler_ = set_module.set_scheduler(
optimizers[0], self.scheduler_name, **self.scheduler_args
)
# Check the training criterion
if not hasattr(self, "_criterion"):
self._criterion = nn.CrossEntropyLoss()
# Utils
best_acc = 0.0
# Internal helper function on pesudo forward
def _forward(estimators, *x):
outputs = [
F.softmax(estimator(*x), dim=1) for estimator in estimators
]
proba = op.average(outputs)
return proba
# Maintain a pool of workers
with Parallel(n_jobs=self.n_jobs) as parallel:
# Training loop
for epoch in range(epochs):
self.train()
if self.use_scheduler_:
if self.scheduler_name == "ReduceLROnPlateau":
cur_lr = optimizers[0].param_groups[0]["lr"]
else:
cur_lr = scheduler_.get_last_lr()[0]
else:
cur_lr = None
if self.n_jobs and self.n_jobs > 1:
msg = "Parallelization on the training epoch: {:03d}"
self.logger.info(msg.format(epoch))
rets = parallel(
delayed(_parallel_fit_per_epoch)(
train_loader,
epsilon,
estimator,
cur_lr,
optimizer,
self._criterion,
idx,
epoch,
log_interval,
self.device,
True,
)
for idx, (estimator, optimizer) in enumerate(
zip(estimators, optimizers)
)
)
estimators, optimizers, losses = [], [], []
for estimator, optimizer, loss in rets:
estimators.append(estimator)
optimizers.append(optimizer)
losses.append(loss)
# Validation
if test_loader:
self.eval()
with torch.no_grad():
correct = 0
total = 0
for _, elem in enumerate(test_loader):
data, target = io.split_data_target(
elem, self.device
)
output = _forward(estimators, *data)
_, predicted = torch.max(output.data, 1)
correct += (predicted == target).sum().item()
total += target.size(0)
acc = 100 * correct / total
if acc > best_acc:
best_acc = acc
self.estimators_ = nn.ModuleList() # reset
self.estimators_.extend(estimators)
if save_model:
io.save(self, save_dir, self.logger)
msg = (
"Epoch: {:03d} | Validation Acc: {:.3f}"
" % | Historical Best: {:.3f} %"
)
self.logger.info(msg.format(epoch, acc, best_acc))
if self.tb_logger:
self.tb_logger.add_scalar(
"adversarial_training/Validation_Acc",
acc,
epoch,
)
# No validation
else:
self.estimators_ = nn.ModuleList()
self.estimators_.extend(estimators)
if save_model:
io.save(self, save_dir, self.logger)
# Update the scheduler
with warnings.catch_warnings():
# UserWarning raised by PyTorch is ignored because
# scheduler does not have a real effect on the optimizer.
warnings.simplefilter("ignore", UserWarning)
if self.use_scheduler_:
if self.scheduler_name == "ReduceLROnPlateau":
if test_loader:
scheduler_.step(acc)
else:
loss = torch.mean(torch.tensor(losses))
scheduler_.step(loss)
else:
scheduler_.step()
@torchensemble_model_doc(item="classifier_evaluate")
def evaluate(self, test_loader, return_loss=False):
return super().evaluate(test_loader, return_loss)
@torchensemble_model_doc(item="predict")
def predict(self, *x):
return super().predict(*x)
@torchensemble_model_doc(
"""Implementation on the AdversarialTrainingRegressor.""", # noqa: E501
"model",
)
class AdversarialTrainingRegressor(_BaseAdversarialTraining, BaseRegressor):
@torchensemble_model_doc(
"""Implementation on the data forwarding in AdversarialTrainingRegressor.""", # noqa: E501
"regressor_forward",
)
def forward(self, *x):
# Take the average over predictions from all base estimators.
outputs = [estimator(*x) for estimator in self.estimators_]
pred = op.average(outputs)
return pred
@torchensemble_model_doc(
"""Set the attributes on optimizer for AdversarialTrainingRegressor.""", # noqa: E501
"set_optimizer",
)
def set_optimizer(self, optimizer_name, **kwargs):
super().set_optimizer(optimizer_name, **kwargs)
@torchensemble_model_doc(
"""Set the attributes on scheduler for AdversarialTrainingRegressor.""", # noqa: E501
"set_scheduler",
)
def set_scheduler(self, scheduler_name, **kwargs):
super().set_scheduler(scheduler_name, **kwargs)
@torchensemble_model_doc(
"""Set the training criterion for AdversarialTrainingRegressor.""",
"set_criterion",
)
def set_criterion(self, criterion):
super().set_criterion(criterion)
@_adversarial_training_model_doc(
"""Implementation on the training stage of AdversarialTrainingRegressor.""", # noqa: E501
"fit",
)
def fit(
self,
train_loader,
epochs=100,
epsilon=0.5,
log_interval=100,
test_loader=None,
save_model=True,
save_dir=None,
):
self._validate_parameters(epochs, epsilon, log_interval)
self.n_outputs = self._decide_n_outputs(train_loader)
# Instantiate a pool of base estimators, optimizers, and schedulers.
estimators = []
for _ in range(self.n_estimators):
estimators.append(self._make_estimator())
optimizers = []
for i in range(self.n_estimators):
optimizers.append(
set_module.set_optimizer(
estimators[i], self.optimizer_name, **self.optimizer_args
)
)
if self.use_scheduler_:
scheduler_ = set_module.set_scheduler(
optimizers[0], self.scheduler_name, **self.scheduler_args
)
# Check the training criterion
if not hasattr(self, "_criterion"):
self._criterion = nn.MSELoss()
# Utils
best_loss = float("inf")
# Internal helper function on pesudo forward
def _forward(estimators, *x):
outputs = [estimator(*x) for estimator in estimators]
pred = op.average(outputs)
return pred
# Maintain a pool of workers
with Parallel(n_jobs=self.n_jobs) as parallel:
# Training loop
for epoch in range(epochs):
self.train()
if self.use_scheduler_:
if self.scheduler_name == "ReduceLROnPlateau":
cur_lr = optimizers[0].param_groups[0]["lr"]
else:
cur_lr = scheduler_.get_last_lr()[0]
else:
cur_lr = None
if self.n_jobs and self.n_jobs > 1:
msg = "Parallelization on the training epoch: {:03d}"
self.logger.info(msg.format(epoch))
rets = parallel(
delayed(_parallel_fit_per_epoch)(
train_loader,
epsilon,
estimator,
cur_lr,
optimizer,
self._criterion,
idx,
epoch,
log_interval,
self.device,
False,
)
for idx, (estimator, optimizer) in enumerate(
zip(estimators, optimizers)
)
)
estimators, optimizers, losses = [], [], []
for estimator, optimizer, loss in rets:
estimators.append(estimator)
optimizers.append(optimizer)
losses.append(loss)
# Validation
if test_loader:
self.eval()
with torch.no_grad():
val_loss = 0.0
for _, elem in enumerate(test_loader):
data, target = io.split_data_target(
elem, self.device
)
output = _forward(estimators, *data)
val_loss += self._criterion(output, target)
val_loss /= len(test_loader)
if val_loss < best_loss:
best_loss = val_loss
self.estimators_ = nn.ModuleList()
self.estimators_.extend(estimators)
if save_model:
io.save(self, save_dir, self.logger)
msg = (
"Epoch: {:03d} | Validation Loss:"
" {:.5f} | Historical Best: {:.5f}"
)
self.logger.info(
msg.format(epoch, val_loss, best_loss)
)
if self.tb_logger:
self.tb_logger.add_scalar(
"adversirial_training/Validation_Loss",
val_loss,
epoch,
)
# No validation
else:
self.estimators_ = nn.ModuleList()
self.estimators_.extend(estimators)
if save_model:
io.save(self, save_dir, self.logger)
# Update the scheduler
with warnings.catch_warnings():
warnings.simplefilter("ignore", UserWarning)
if self.use_scheduler_:
if self.scheduler_name == "ReduceLROnPlateau":
if test_loader:
scheduler_.step(val_loss)
else:
loss = torch.mean(torch.tensor(losses))
scheduler_.step(loss)
else:
scheduler_.step()
@torchensemble_model_doc(item="regressor_evaluate")
def evaluate(self, test_loader):
return super().evaluate(test_loader)
@torchensemble_model_doc(item="predict")
def predict(self, *x):
return super().predict(*x)