|
| 1 | +""" |
| 2 | +This abomination converts between one of several quantized model formats to the same format as returned by main.py . |
| 3 | +This code exists because we failed to produce a single data format for quantized model. |
| 4 | +We should eventually switch to saving all models in the same data format. Once we do, this file should be deleted. |
| 5 | +""" |
| 6 | +import argparse |
| 7 | +import os |
| 8 | +import warnings |
| 9 | +from copy import deepcopy |
| 10 | + |
| 11 | +import torch |
| 12 | +import transformers.models |
| 13 | +from torch import nn |
| 14 | + |
| 15 | +from src.aq import QuantizedLinear, QuantizedWeight |
| 16 | +from src.modelutils import get_model, save_quantized_model |
| 17 | +from src.utils import is_signed |
| 18 | + |
| 19 | + |
| 20 | +def load_quantized_model_with_old_pickle(base_model_name: str, quantized_model_name: str, **kwargs): |
| 21 | + """Hacky way to allow compatibility between old *pickled* layers and new transformers""" |
| 22 | + # because patching it for the fourth time is better than writing a proper saver once >.< |
| 23 | + import transformers.activations |
| 24 | + |
| 25 | + if not hasattr(transformers.activations, "SiLUActivation"): |
| 26 | + transformers.activations.SiLUActivation = deepcopy(torch.nn.SiLU) |
| 27 | + transformers.activations.SiLUActivation.inplace = False |
| 28 | + # https://github.com/huggingface/transformers/issues/28496 |
| 29 | + if not hasattr(transformers.models.llama.modeling_llama.LlamaAttention, "attention_dropout"): |
| 30 | + transformers.models.llama.modeling_llama.LlamaAttention.attention_dropout = 0 |
| 31 | + quantized_model = get_model(base_model_name, None, **kwargs) |
| 32 | + quantized_model_src = get_model(base_model_name, quantized_model_name, **kwargs) |
| 33 | + for module in quantized_model_src.modules(): |
| 34 | + if isinstance(module, QuantizedWeight) and not hasattr(module, "codes_storage"): |
| 35 | + module.codes_storage = None # backwards compatibility with older pickled snapshots |
| 36 | + |
| 37 | + lut = {} |
| 38 | + for name, module in quantized_model_src.named_modules(): |
| 39 | + for child_name, child_module in module.named_children(): |
| 40 | + if isinstance(child_module, QuantizedWeight): |
| 41 | + lut[name + "." + child_name] = child_module |
| 42 | + print(f"found {len(lut)} quantized weight matrices") |
| 43 | + for name, module in quantized_model.named_modules(): |
| 44 | + for child_name, child_module in module.named_children(): |
| 45 | + if name + "." + child_name + ".quantized_weight" in lut: |
| 46 | + quantized_weight = lut.pop(name + "." + child_name + ".quantized_weight") |
| 47 | + assert isinstance(child_module, nn.Linear) |
| 48 | + setattr(module, child_name, QuantizedLinear(quantized_weight, bias=child_module.bias)) |
| 49 | + assert not lut, list(lut.keys()) |
| 50 | + quantized_model.load_state_dict(quantized_model_src.state_dict()) |
| 51 | + warnings.warn("You should be ashamed of yourself.") |
| 52 | + return quantized_model |
| 53 | + |
| 54 | + |
| 55 | +import functools |
| 56 | + |
| 57 | + |
| 58 | +def rsetattr(obj, attr, val): |
| 59 | + pre, _, post = attr.rpartition(".") |
| 60 | + return setattr(rgetattr(obj, pre) if pre else obj, post, val) |
| 61 | + |
| 62 | + |
| 63 | +def rgetattr(obj, attr, *args): |
| 64 | + def _getattr(obj, attr): |
| 65 | + return getattr(obj, attr, *args) |
| 66 | + |
| 67 | + return functools.reduce(_getattr, [obj] + attr.split(".")) |
| 68 | + |
| 69 | + |
| 70 | +def load_quantized_model_from_fdsp_checkpoint(base_model_name: str, fsdp_checkpoint_path: str, **kwargs): |
| 71 | + original_model = get_model(base_model_name, None, **kwargs) |
| 72 | + |
| 73 | + state_filenames = os.listdir(fsdp_checkpoint_path) |
| 74 | + |
| 75 | + non_quant_fname = "non_quantized_state_dict.pth" |
| 76 | + non_quant_path = os.path.join(fsdp_checkpoint_path, non_quant_fname) |
| 77 | + non_quant_states = torch.load(non_quant_path) |
| 78 | + |
| 79 | + incomp_keys = original_model.load_state_dict(non_quant_states, strict=False) |
| 80 | + assert not incomp_keys.unexpected_keys |
| 81 | + |
| 82 | + missing_keys = list() |
| 83 | + for module_name, module in original_model.named_modules(): |
| 84 | + if not isinstance(module, nn.Linear): |
| 85 | + continue |
| 86 | + |
| 87 | + assert not module.bias |
| 88 | + state_fname = f"{module_name}.weight.pth" |
| 89 | + |
| 90 | + if state_fname not in state_filenames: |
| 91 | + missing_keys.append(module_name) |
| 92 | + continue |
| 93 | + |
| 94 | + state_path = os.path.join(fsdp_checkpoint_path, state_fname) |
| 95 | + quantized_weight = torch.load(state_path, map_location="cpu") |
| 96 | + quantized_linear = QuantizedLinear(quantized_weight, bias=None) |
| 97 | + rsetattr(original_model, module_name, quantized_linear) |
| 98 | + |
| 99 | + return original_model |
| 100 | + |
| 101 | + |
| 102 | +def main(): |
| 103 | + parser = argparse.ArgumentParser(add_help=True) |
| 104 | + parser.add_argument( |
| 105 | + "--base_model", |
| 106 | + type=str, |
| 107 | + required=True, |
| 108 | + help="path or name of the teacher model", |
| 109 | + ) |
| 110 | + parser.add_argument( |
| 111 | + "--quantized_model", |
| 112 | + type=str, |
| 113 | + required=True, |
| 114 | + help="path to quantized model", |
| 115 | + ) |
| 116 | + parser.add_argument( |
| 117 | + "--load_dtype", |
| 118 | + type=str, |
| 119 | + default="auto", |
| 120 | + choices=["auto", "float16", "float32", "bfloat16"], |
| 121 | + help="dtype to load the model in", |
| 122 | + ) |
| 123 | + parser.add_argument( |
| 124 | + "--code_dtype", |
| 125 | + type=str, |
| 126 | + default=None, |
| 127 | + help="if specified, cast quantized layers' codes to this dtype; default = keep loaded dtype", |
| 128 | + ) |
| 129 | + parser.add_argument( |
| 130 | + "--p_finetuned_state_dict", |
| 131 | + type=str, |
| 132 | + default=None, |
| 133 | + help="path to quantized model state dict saved by the old FSDP finetuning code", |
| 134 | + ) |
| 135 | + parser.add_argument( |
| 136 | + "--pv_fsdp_dir", |
| 137 | + type=str, |
| 138 | + default=None, |
| 139 | + help="path to quantized model state dict saved by the old FSDP finetuning code", |
| 140 | + ) |
| 141 | + parser.add_argument( |
| 142 | + "--monkeypatch_old_pickle", |
| 143 | + action="store_true", |
| 144 | + help="If set, load quantized_model in a hacky way that allows pickled models with older transformers/torch.", |
| 145 | + ) |
| 146 | + parser.add_argument( |
| 147 | + "--attn_implementation", |
| 148 | + type=str, |
| 149 | + default=None, |
| 150 | + help="Attention implementation for both teacher and student models: eager, sdpa, or flash_attention_2", |
| 151 | + ) |
| 152 | + parser.add_argument( |
| 153 | + "--trust_remote_code", |
| 154 | + action="store_true", |
| 155 | + help="Whether to trust remote code when loading base model.", |
| 156 | + ) |
| 157 | + parser.add_argument("--save", type=str, required=True, help="Save the converted quantized model here") |
| 158 | + |
| 159 | + args = parser.parse_args() |
| 160 | + assert args.p_finetuned_state_dict or args.pv_fsdp_dir, "either one of those must be specified" |
| 161 | + print(f"{args.p_finetuned_state_dict=}, {args.pv_fsdp_dir=}") |
| 162 | + assert (args.p_finetuned_state_dict is not None) != (args.pv_fsdp_dir is not None) |
| 163 | + |
| 164 | + args.load_dtype = getattr(torch, args.load_dtype) if args.load_dtype != "auto" else "auto" |
| 165 | + args.code_dtype = getattr(torch, args.code_dtype) if args.code_dtype is not None else None |
| 166 | + |
| 167 | + if not args.monkeypatch_old_pickle: |
| 168 | + quantized_model = get_model( |
| 169 | + args.base_model, |
| 170 | + args.quantized_model, |
| 171 | + dtype=args.load_dtype, |
| 172 | + trust_remote_code=args.trust_remote_code, |
| 173 | + attn_implementation=args.attn_implementation, |
| 174 | + ) |
| 175 | + elif args.p_finetuned_state_dict: |
| 176 | + quantized_model = load_quantized_model_with_old_pickle( |
| 177 | + args.base_model, |
| 178 | + args.quantized_model, |
| 179 | + dtype=args.load_dtype, |
| 180 | + trust_remote_code=args.trust_remote_code, |
| 181 | + attn_implementation=args.attn_implementation, |
| 182 | + ) |
| 183 | + elif args.pv_fsdp_dir: |
| 184 | + quantized_model = load_quantized_model_from_fdsp_checkpoint( |
| 185 | + args.base_model, |
| 186 | + args.pv_fsdp_dir, |
| 187 | + dtype=args.load_dtype, |
| 188 | + trust_remote_code=args.trust_remote_code, |
| 189 | + ) |
| 190 | + |
| 191 | + for module in quantized_model.modules(): |
| 192 | + if isinstance(module, QuantizedWeight): |
| 193 | + if not hasattr(module, "codes_storage"): |
| 194 | + module.codes_storage = None |
| 195 | + if module.codes is None: |
| 196 | + module.unwrap_codes_() |
| 197 | + assert module.codes is not None |
| 198 | + if args.code_dtype is not None: |
| 199 | + assert module.nbits_per_codebook <= torch.iinfo(args.code_dtype).bits - is_signed(args.code_dtype) |
| 200 | + module.codes = nn.Parameter(module.codes.to(args.code_dtype), requires_grad=module.codes.requires_grad) |
| 201 | + |
| 202 | + if args.p_finetuned_state_dict is not None: |
| 203 | + state_dict = torch.load(args.p_finetuned_state_dict, map_location="cpu") |
| 204 | + state_dict = {k: v for k, v in state_dict.items() if not k.endswith(".codes_storage.data")} |
| 205 | + status = quantized_model.load_state_dict(state_dict, strict=False) |
| 206 | + assert all(key.endswith("codes") for key in status.missing_keys) |
| 207 | + assert not status.unexpected_keys |
| 208 | + del state_dict, status # note: in this case, it is okay not to load codes since P step does not change them |
| 209 | + |
| 210 | + save_quantized_model(quantized_model, args.save) |
| 211 | + |
| 212 | + |
| 213 | +if __name__ == "__main__": |
| 214 | + main() |
0 commit comments