forked from rust-lang/rust
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmod.rs
160 lines (142 loc) · 5.99 KB
/
mod.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
// This file contains various trait resolution methods used by codegen.
// They all assume regions can be erased and monomorphic types. It
// seems likely that they should eventually be merged into more
// general routines.
use crate::dep_graph::{DepKind, DepTrackingMapConfig};
use std::marker::PhantomData;
use crate::infer::InferCtxt;
use crate::traits::{FulfillmentContext, Obligation, ObligationCause, SelectionContext,
TraitEngine, Vtable};
use crate::ty::{self, Ty, TyCtxt};
use crate::ty::subst::{Subst, SubstsRef};
use crate::ty::fold::TypeFoldable;
/// Attempts to resolve an obligation to a vtable. The result is
/// a shallow vtable resolution, meaning that we do not
/// (necessarily) resolve all nested obligations on the impl. Note
/// that type check should guarantee to us that all nested
/// obligations *could be* resolved if we wanted to.
/// Assumes that this is run after the entire crate has been successfully type-checked.
pub fn codegen_fulfill_obligation<'tcx>(
ty: TyCtxt<'tcx>,
(param_env, trait_ref): (ty::ParamEnv<'tcx>, ty::PolyTraitRef<'tcx>),
) -> Vtable<'tcx, ()> {
// Remove any references to regions; this helps improve caching.
let trait_ref = ty.erase_regions(&trait_ref);
debug!("codegen_fulfill_obligation(trait_ref={:?}, def_id={:?})",
(param_env, trait_ref), trait_ref.def_id());
// Do the initial selection for the obligation. This yields the
// shallow result we are looking for -- that is, what specific impl.
ty.infer_ctxt().enter(|infcx| {
let mut selcx = SelectionContext::new(&infcx);
let obligation_cause = ObligationCause::dummy();
let obligation = Obligation::new(obligation_cause,
param_env,
trait_ref.to_poly_trait_predicate());
let selection = match selcx.select(&obligation) {
Ok(Some(selection)) => selection,
Ok(None) => {
// Ambiguity can happen when monomorphizing during trans
// expands to some humongo type that never occurred
// statically -- this humongo type can then overflow,
// leading to an ambiguous result. So report this as an
// overflow bug, since I believe this is the only case
// where ambiguity can result.
bug!("Encountered ambiguity selecting `{:?}` during codegen, \
presuming due to overflow",
trait_ref)
}
Err(e) => {
bug!("Encountered error `{:?}` selecting `{:?}` during codegen", e, trait_ref)
}
};
debug!("fulfill_obligation: selection={:?}", selection);
// Currently, we use a fulfillment context to completely resolve
// all nested obligations. This is because they can inform the
// inference of the impl's type parameters.
let mut fulfill_cx = FulfillmentContext::new();
let vtable = selection.map(|predicate| {
debug!("fulfill_obligation: register_predicate_obligation {:?}", predicate);
fulfill_cx.register_predicate_obligation(&infcx, predicate);
});
let vtable = infcx.drain_fulfillment_cx_or_panic(&mut fulfill_cx, &vtable);
info!("Cache miss: {:?} => {:?}", trait_ref, vtable);
vtable
})
}
impl<'tcx> TyCtxt<'tcx> {
/// Monomorphizes a type from the AST by first applying the
/// in-scope substitutions and then normalizing any associated
/// types.
pub fn subst_and_normalize_erasing_regions<T>(
self,
param_substs: SubstsRef<'tcx>,
param_env: ty::ParamEnv<'tcx>,
value: &T
) -> T
where
T: TypeFoldable<'tcx>,
{
debug!(
"subst_and_normalize_erasing_regions(\
param_substs={:?}, \
value={:?}, \
param_env={:?})",
param_substs,
value,
param_env,
);
let substituted = value.subst(self, param_substs);
self.normalize_erasing_regions(param_env, substituted)
}
}
// Implement DepTrackingMapConfig for `trait_cache`
pub struct TraitSelectionCache<'tcx> {
data: PhantomData<&'tcx ()>
}
impl<'tcx> DepTrackingMapConfig for TraitSelectionCache<'tcx> {
type Key = (ty::ParamEnv<'tcx>, ty::PolyTraitRef<'tcx>);
type Value = Vtable<'tcx, ()>;
fn to_dep_kind() -> DepKind {
DepKind::TraitSelect
}
}
// # Global Cache
pub struct ProjectionCache<'tcx> {
data: PhantomData<&'tcx ()>,
}
impl<'tcx> DepTrackingMapConfig for ProjectionCache<'tcx> {
type Key = Ty<'tcx>;
type Value = Ty<'tcx>;
fn to_dep_kind() -> DepKind {
DepKind::TraitSelect
}
}
impl<'a, 'tcx> InferCtxt<'a, 'tcx> {
/// Finishes processes any obligations that remain in the
/// fulfillment context, and then returns the result with all type
/// variables removed and regions erased. Because this is intended
/// for use after type-check has completed, if any errors occur,
/// it will panic. It is used during normalization and other cases
/// where processing the obligations in `fulfill_cx` may cause
/// type inference variables that appear in `result` to be
/// unified, and hence we need to process those obligations to get
/// the complete picture of the type.
fn drain_fulfillment_cx_or_panic<T>(
&self,
fulfill_cx: &mut FulfillmentContext<'tcx>,
result: &T,
) -> T
where
T: TypeFoldable<'tcx>,
{
debug!("drain_fulfillment_cx_or_panic()");
// In principle, we only need to do this so long as `result`
// contains unbound type parameters. It could be a slight
// optimization to stop iterating early.
if let Err(errors) = fulfill_cx.select_all_or_error(self) {
bug!("Encountered errors `{:?}` resolving bounds after type-checking", errors);
}
let result = self.resolve_vars_if_possible(result);
self.tcx.erase_regions(&result)
}
}