title | description |
---|---|
For Server Developers |
Get started building your own server to use in Claude for Desktop and other clients. |
In this tutorial, we'll build a simple MCP weather server and connect it to a host, Claude for Desktop. We'll start with a basic setup, and then progress to more complex use cases.
Many LLMs do not currently have the ability to fetch the forecast and severe weather alerts. Let's use MCP to solve that!
We'll build a server that exposes two tools: get-alerts
and get-forecast
. Then we'll connect the server to an MCP host (in this case, Claude for Desktop):
MCP servers can provide three main types of capabilities:
- Resources: File-like data that can be read by clients (like API responses or file contents)
- Tools: Functions that can be called by the LLM (with user approval)
- Prompts: Pre-written templates that help users accomplish specific tasks
This tutorial will primarily focus on tools.
Let's get started with building our weather server! You can find the complete code for what we'll be building here.
This quickstart assumes you have familiarity with:
- Python
- LLMs like Claude
- Python 3.10 or higher installed.
- You must use the Python MCP SDK 1.2.0 or higher.
First, let's install uv
and set up our Python project and environment:
curl -LsSf https://astral.sh/uv/install.sh | sh
powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"
Make sure to restart your terminal afterwards to ensure that the uv
command gets picked up.
Now, let's create and set up our project:
```bash MacOS/Linux # Create a new directory for our project uv init weather cd weatheruv venv source .venv/bin/activate
uv add "mcp[cli]" httpx
touch weather.py
```powershell Windows
# Create a new directory for our project
uv init weather
cd weather
# Create virtual environment and activate it
uv venv
.venv\Scripts\activate
# Install dependencies
uv add mcp[cli] httpx
# Create our server file
new-item weather.py
Now let's dive into building your server.
Add these to the top of your weather.py
:
from typing import Any
import httpx
from mcp.server.fastmcp import FastMCP
# Initialize FastMCP server
mcp = FastMCP("weather")
# Constants
NWS_API_BASE = "https://api.weather.gov"
USER_AGENT = "weather-app/1.0"
The FastMCP class uses Python type hints and docstrings to automatically generate tool definitions, making it easy to create and maintain MCP tools.
Next, let's add our helper functions for querying and formatting the data from the National Weather Service API:
async def make_nws_request(url: str) -> dict[str, Any] | None:
"""Make a request to the NWS API with proper error handling."""
headers = {
"User-Agent": USER_AGENT,
"Accept": "application/geo+json"
}
async with httpx.AsyncClient() as client:
try:
response = await client.get(url, headers=headers, timeout=30.0)
response.raise_for_status()
return response.json()
except Exception:
return None
def format_alert(feature: dict) -> str:
"""Format an alert feature into a readable string."""
props = feature["properties"]
return f"""
Event: {props.get('event', 'Unknown')}
Area: {props.get('areaDesc', 'Unknown')}
Severity: {props.get('severity', 'Unknown')}
Description: {props.get('description', 'No description available')}
Instructions: {props.get('instruction', 'No specific instructions provided')}
"""
The tool execution handler is responsible for actually executing the logic of each tool. Let's add it:
@mcp.tool()
async def get_alerts(state: str) -> str:
"""Get weather alerts for a US state.
Args:
state: Two-letter US state code (e.g. CA, NY)
"""
url = f"{NWS_API_BASE}/alerts/active/area/{state}"
data = await make_nws_request(url)
if not data or "features" not in data:
return "Unable to fetch alerts or no alerts found."
if not data["features"]:
return "No active alerts for this state."
alerts = [format_alert(feature) for feature in data["features"]]
return "\n---\n".join(alerts)
@mcp.tool()
async def get_forecast(latitude: float, longitude: float) -> str:
"""Get weather forecast for a location.
Args:
latitude: Latitude of the location
longitude: Longitude of the location
"""
# First get the forecast grid endpoint
points_url = f"{NWS_API_BASE}/points/{latitude},{longitude}"
points_data = await make_nws_request(points_url)
if not points_data:
return "Unable to fetch forecast data for this location."
# Get the forecast URL from the points response
forecast_url = points_data["properties"]["forecast"]
forecast_data = await make_nws_request(forecast_url)
if not forecast_data:
return "Unable to fetch detailed forecast."
# Format the periods into a readable forecast
periods = forecast_data["properties"]["periods"]
forecasts = []
for period in periods[:5]: # Only show next 5 periods
forecast = f"""
{period['name']}:
Temperature: {period['temperature']}°{period['temperatureUnit']}
Wind: {period['windSpeed']} {period['windDirection']}
Forecast: {period['detailedForecast']}
"""
forecasts.append(forecast)
return "\n---\n".join(forecasts)
Finally, let's initialize and run the server:
if __name__ == "__main__":
# Initialize and run the server
mcp.run(transport='stdio')
Your server is complete! Run uv run weather.py
to confirm that everything's working.
Let's now test your server from an existing MCP host, Claude for Desktop.
Claude for Desktop is not yet available on Linux. Linux users can proceed to the [Building a client](/quickstart/client) tutorial to build an MCP client that connects to the server we just built.First, make sure you have Claude for Desktop installed. You can install the latest version here. If you already have Claude for Desktop, make sure it's updated to the latest version.
We'll need to configure Claude for Desktop for whichever MCP servers you want to use. To do this, open your Claude for Desktop App configuration at ~/Library/Application Support/Claude/claude_desktop_config.json
in a text editor. Make sure to create the file if it doesn't exist.
For example, if you have VS Code installed:
```bash code ~/Library/Application\ Support/Claude/claude_desktop_config.json ``` ```powershell code $env:AppData\Claude\claude_desktop_config.json ```You'll then add your servers in the mcpServers
key. The MCP UI elements will only show up in Claude for Desktop if at least one server is properly configured.
In this case, we'll add our single weather server like so:
```json Python { "mcpServers": { "weather": { "command": "uv", "args": [ "--directory", "/ABSOLUTE/PATH/TO/PARENT/FOLDER/weather", "run", "weather.py" ] } } } ``` ```json Python { "mcpServers": { "weather": { "command": "uv", "args": [ "--directory", "C:\\ABSOLUTE\\PATH\\TO\\PARENT\\FOLDER\\weather", "run", "weather.py" ] } } } ``` You may need to put the full path to the `uv` executable in the `command` field. You can get this by running `which uv` on MacOS/Linux or `where uv` on Windows. Make sure you pass in the absolute path to your server.This tells Claude for Desktop:
- There's an MCP server named "weather"
- To launch it by running
uv --directory /ABSOLUTE/PATH/TO/PARENT/FOLDER/weather run weather.py
Save the file, and restart Claude for Desktop.
Let's get started with building our weather server! [You can find the complete code for what we'll be building here.](https://github.com/modelcontextprotocol/quickstart-resources/tree/main/weather-server-typescript)This quickstart assumes you have familiarity with:
- TypeScript
- LLMs like Claude
For TypeScript, make sure you have the latest version of Node installed.
First, let's install Node.js and npm if you haven't already. You can download them from nodejs.org. Verify your Node.js installation:
node --version
npm --version
For this tutorial, you'll need Node.js version 16 or higher.
Now, let's create and set up our project:
```bash MacOS/Linux # Create a new directory for our project mkdir weather cd weathernpm init -y
npm install @modelcontextprotocol/sdk zod npm install -D @types/node typescript
mkdir src touch src/index.ts
```powershell Windows
# Create a new directory for our project
md weather
cd weather
# Initialize a new npm project
npm init -y
# Install dependencies
npm install @modelcontextprotocol/sdk zod
npm install -D @types/node typescript
# Create our files
md src
new-item src\index.ts
Update your package.json to add type: "module" and a build script:
{
"type": "module",
"bin": {
"weather": "./build/index.js"
},
"scripts": {
"build": "tsc && chmod 755 build/index.js"
},
"files": [
"build"
],
}
Create a tsconfig.json
in the root of your project:
{
"compilerOptions": {
"target": "ES2022",
"module": "Node16",
"moduleResolution": "Node16",
"outDir": "./build",
"rootDir": "./src",
"strict": true,
"esModuleInterop": true,
"skipLibCheck": true,
"forceConsistentCasingInFileNames": true
},
"include": ["src/**/*"],
"exclude": ["node_modules"]
}
Now let's dive into building your server.
Add these to the top of your src/index.ts
:
import { McpServer } from "@modelcontextprotocol/sdk/server/mcp.js";
import { StdioServerTransport } from "@modelcontextprotocol/sdk/server/stdio.js";
import { z } from "zod";
const NWS_API_BASE = "https://api.weather.gov";
const USER_AGENT = "weather-app/1.0";
// Create server instance
const server = new McpServer({
name: "weather",
version: "1.0.0",
capabilities: {
resources: {},
tools: {},
},
});
Next, let's add our helper functions for querying and formatting the data from the National Weather Service API:
// Helper function for making NWS API requests
async function makeNWSRequest<T>(url: string): Promise<T | null> {
const headers = {
"User-Agent": USER_AGENT,
Accept: "application/geo+json",
};
try {
const response = await fetch(url, { headers });
if (!response.ok) {
throw new Error(`HTTP error! status: ${response.status}`);
}
return (await response.json()) as T;
} catch (error) {
console.error("Error making NWS request:", error);
return null;
}
}
interface AlertFeature {
properties: {
event?: string;
areaDesc?: string;
severity?: string;
status?: string;
headline?: string;
};
}
// Format alert data
function formatAlert(feature: AlertFeature): string {
const props = feature.properties;
return [
`Event: ${props.event || "Unknown"}`,
`Area: ${props.areaDesc || "Unknown"}`,
`Severity: ${props.severity || "Unknown"}`,
`Status: ${props.status || "Unknown"}`,
`Headline: ${props.headline || "No headline"}`,
"---",
].join("\n");
}
interface ForecastPeriod {
name?: string;
temperature?: number;
temperatureUnit?: string;
windSpeed?: string;
windDirection?: string;
shortForecast?: string;
}
interface AlertsResponse {
features: AlertFeature[];
}
interface PointsResponse {
properties: {
forecast?: string;
};
}
interface ForecastResponse {
properties: {
periods: ForecastPeriod[];
};
}
The tool execution handler is responsible for actually executing the logic of each tool. Let's add it:
// Register weather tools
server.tool(
"get-alerts",
"Get weather alerts for a state",
{
state: z.string().length(2).describe("Two-letter state code (e.g. CA, NY)"),
},
async ({ state }) => {
const stateCode = state.toUpperCase();
const alertsUrl = `${NWS_API_BASE}/alerts?area=${stateCode}`;
const alertsData = await makeNWSRequest<AlertsResponse>(alertsUrl);
if (!alertsData) {
return {
content: [
{
type: "text",
text: "Failed to retrieve alerts data",
},
],
};
}
const features = alertsData.features || [];
if (features.length === 0) {
return {
content: [
{
type: "text",
text: `No active alerts for ${stateCode}`,
},
],
};
}
const formattedAlerts = features.map(formatAlert);
const alertsText = `Active alerts for ${stateCode}:\n\n${formattedAlerts.join("\n")}`;
return {
content: [
{
type: "text",
text: alertsText,
},
],
};
},
);
server.tool(
"get-forecast",
"Get weather forecast for a location",
{
latitude: z.number().min(-90).max(90).describe("Latitude of the location"),
longitude: z.number().min(-180).max(180).describe("Longitude of the location"),
},
async ({ latitude, longitude }) => {
// Get grid point data
const pointsUrl = `${NWS_API_BASE}/points/${latitude.toFixed(4)},${longitude.toFixed(4)}`;
const pointsData = await makeNWSRequest<PointsResponse>(pointsUrl);
if (!pointsData) {
return {
content: [
{
type: "text",
text: `Failed to retrieve grid point data for coordinates: ${latitude}, ${longitude}. This location may not be supported by the NWS API (only US locations are supported).`,
},
],
};
}
const forecastUrl = pointsData.properties?.forecast;
if (!forecastUrl) {
return {
content: [
{
type: "text",
text: "Failed to get forecast URL from grid point data",
},
],
};
}
// Get forecast data
const forecastData = await makeNWSRequest<ForecastResponse>(forecastUrl);
if (!forecastData) {
return {
content: [
{
type: "text",
text: "Failed to retrieve forecast data",
},
],
};
}
const periods = forecastData.properties?.periods || [];
if (periods.length === 0) {
return {
content: [
{
type: "text",
text: "No forecast periods available",
},
],
};
}
// Format forecast periods
const formattedForecast = periods.map((period: ForecastPeriod) =>
[
`${period.name || "Unknown"}:`,
`Temperature: ${period.temperature || "Unknown"}°${period.temperatureUnit || "F"}`,
`Wind: ${period.windSpeed || "Unknown"} ${period.windDirection || ""}`,
`${period.shortForecast || "No forecast available"}`,
"---",
].join("\n"),
);
const forecastText = `Forecast for ${latitude}, ${longitude}:\n\n${formattedForecast.join("\n")}`;
return {
content: [
{
type: "text",
text: forecastText,
},
],
};
},
);
Finally, implement the main function to run the server:
async function main() {
const transport = new StdioServerTransport();
await server.connect(transport);
console.error("Weather MCP Server running on stdio");
}
main().catch((error) => {
console.error("Fatal error in main():", error);
process.exit(1);
});
Make sure to run npm run build
to build your server! This is a very important step in getting your server to connect.
Let's now test your server from an existing MCP host, Claude for Desktop.
Claude for Desktop is not yet available on Linux. Linux users can proceed to the [Building a client](/quickstart/client) tutorial to build an MCP client that connects to the server we just built.First, make sure you have Claude for Desktop installed. You can install the latest version here. If you already have Claude for Desktop, make sure it's updated to the latest version.
We'll need to configure Claude for Desktop for whichever MCP servers you want to use. To do this, open your Claude for Desktop App configuration at ~/Library/Application Support/Claude/claude_desktop_config.json
in a text editor. Make sure to create the file if it doesn't exist.
For example, if you have VS Code installed:
```bash code ~/Library/Application\ Support/Claude/claude_desktop_config.json ``` ```powershell code $env:AppData\Claude\claude_desktop_config.json ```You'll then add your servers in the mcpServers
key. The MCP UI elements will only show up in Claude for Desktop if at least one server is properly configured.
In this case, we'll add our single weather server like so:
```json Node { "mcpServers": { "weather": { "command": "node", "args": [ "/ABSOLUTE/PATH/TO/PARENT/FOLDER/weather/build/index.js" ] } } } ``` ```json Node { "mcpServers": { "weather": { "command": "node", "args": [ "C:\\PATH\\TO\\PARENT\\FOLDER\\weather\\build\\index.js" ] } } } ```This tells Claude for Desktop:
- There's an MCP server named "weather"
- Launch it by running
node /ABSOLUTE/PATH/TO/PARENT/FOLDER/weather/build/index.js
Save the file, and restart Claude for Desktop.
This is a quickstart demo based on Spring AI MCP auto-configuration and boot starters. To learn how to create sync and async MCP Servers, manually, consult the [Java SDK Server](/sdk/java/mcp-server) documentation.Let's get started with building our weather server! You can find the complete code for what we'll be building here.
For more information, see the MCP Server Boot Starter reference documentation. For manual MCP Server implementation, refer to the MCP Server Java SDK documentation.
- Java 17 or higher installed.
- Spring Boot 3.3.x or higher
Use the Spring Initializer to bootstrap the project.
You will need to add the following dependencies:
```xml org.springframework.ai spring-ai-starter-mcp-server <dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-web</artifactId>
</dependency>
Then configure your application by setting the application properties:
spring.main.bannerMode=off
logging.pattern.console=
logging:
pattern:
console:
spring:
main:
banner-mode: off
The Server Configuration Properties documents all available properties.
Now let's dive into building your server.
Let's implement a WeatherService.java that uses a REST client to query the data from the National Weather Service API:
@Service
public class WeatherService {
private final RestClient restClient;
public WeatherService() {
this.restClient = RestClient.builder()
.baseUrl("https://api.weather.gov")
.defaultHeader("Accept", "application/geo+json")
.defaultHeader("User-Agent", "WeatherApiClient/1.0 ([email protected])")
.build();
}
@Tool(description = "Get weather forecast for a specific latitude/longitude")
public String getWeatherForecastByLocation(
double latitude, // Latitude coordinate
double longitude // Longitude coordinate
) {
// Returns detailed forecast including:
// - Temperature and unit
// - Wind speed and direction
// - Detailed forecast description
}
@Tool(description = "Get weather alerts for a US state")
public String getAlerts(
@ToolParam(description = "Two-letter US state code (e.g. CA, NY") String state)
) {
// Returns active alerts including:
// - Event type
// - Affected area
// - Severity
// - Description
// - Safety instructions
}
// ......
}
The @Service
annotation with auto-register the service in your application context.
The Spring AI @Tool
annotation, making it easy to create and maintain MCP tools.
The auto-configuration will automatically register these tools with the MCP server.
@SpringBootApplication
public class McpServerApplication {
public static void main(String[] args) {
SpringApplication.run(McpServerApplication.class, args);
}
@Bean
public ToolCallbackProvider weatherTools(WeatherService weatherService) {
return MethodToolCallbackProvider.builder().toolObjects(weatherService).build();
}
}
Uses the the MethodToolCallbackProvider
utils to convert the @Tools
into actionable callbacks used by the MCP server.
Finally, let's build the server:
./mvnw clean install
This will generate a mcp-weather-stdio-server-0.0.1-SNAPSHOT.jar
file within the target
folder.
Let's now test your server from an existing MCP host, Claude for Desktop.
Claude for Desktop is not yet available on Linux.First, make sure you have Claude for Desktop installed. You can install the latest version here. If you already have Claude for Desktop, make sure it's updated to the latest version.
We'll need to configure Claude for Desktop for whichever MCP servers you want to use.
To do this, open your Claude for Desktop App configuration at ~/Library/Application Support/Claude/claude_desktop_config.json
in a text editor.
Make sure to create the file if it doesn't exist.
For example, if you have VS Code installed:
```bash code ~/Library/Application\ Support/Claude/claude_desktop_config.json ``` ```powershell code $env:AppData\Claude\claude_desktop_config.json ```You'll then add your servers in the mcpServers
key.
The MCP UI elements will only show up in Claude for Desktop if at least one server is properly configured.
In this case, we'll add our single weather server like so:
```json java { "mcpServers": { "spring-ai-mcp-weather": { "command": "java", "args": [ "-Dspring.ai.mcp.server.stdio=true", "-jar", "/ABSOLUTE/PATH/TO/PARENT/FOLDER/mcp-weather-stdio-server-0.0.1-SNAPSHOT.jar" ] } } } ``` ```json java { "mcpServers": { "spring-ai-mcp-weather": { "command": "java", "args": [ "-Dspring.ai.mcp.server.transport=STDIO", "-jar", "C:\\ABSOLUTE\\PATH\\TO\\PARENT\\FOLDER\\weather\\mcp-weather-stdio-server-0.0.1-SNAPSHOT.jar" ] } } } ``` Make sure you pass in the absolute path to your server.This tells Claude for Desktop:
- There's an MCP server named "my-weather-server"
- To launch it by running
java -jar /ABSOLUTE/PATH/TO/PARENT/FOLDER/mcp-weather-stdio-server-0.0.1-SNAPSHOT.jar
Save the file, and restart Claude for Desktop.
Use the McpClient
to connect to the server:
var stdioParams = ServerParameters.builder("java")
.args("-jar", "/ABSOLUTE/PATH/TO/PARENT/FOLDER/mcp-weather-stdio-server-0.0.1-SNAPSHOT.jar")
.build();
var stdioTransport = new StdioClientTransport(stdioParams);
var mcpClient = McpClient.sync(stdioTransport).build();
mcpClient.initialize();
ListToolsResult toolsList = mcpClient.listTools();
CallToolResult weather = mcpClient.callTool(
new CallToolRequest("getWeatherForecastByLocation",
Map.of("latitude", "47.6062", "longitude", "-122.3321")));
CallToolResult alert = mcpClient.callTool(
new CallToolRequest("getAlerts", Map.of("state", "NY")));
mcpClient.closeGracefully();
Create a new boot starter application using the spring-ai-starter-mcp-client
dependency:
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-starter-mcp-client</artifactId>
</dependency>
and set the spring.ai.mcp.client.stdio.servers-configuration
property to point to your claude_desktop_config.json
.
You can re-use the existing Anthropic Desktop configuration:
spring.ai.mcp.client.stdio.servers-configuration=file:PATH/TO/claude_desktop_config.json
When you start your client application, the auto-configuration will create, automatically MCP clients from the claude_desktop_config.json.
For more information, see the MCP Client Boot Starters reference documentation.
The starter-webflux-server demonstrates how to create a MCP server using SSE transport. It showcases how to define and register MCP Tools, Resources, and Prompts, using the Spring Boot's auto-configuration capabilities.
Let's get started with building our weather server! [You can find the complete code for what we'll be building here.](https://github.com/modelcontextprotocol/kotlin-sdk/tree/main/samples/weather-stdio-server)This quickstart assumes you have familiarity with:
- Kotlin
- LLMs like Claude
- Java 17 or higher installed.
First, let's install java
and gradle
if you haven't already.
You can download java
from official Oracle JDK website.
Verify your java
installation:
java --version
Now, let's create and set up your project:
```bash MacOS/Linux # Create a new directory for our project mkdir weather cd weathergradle init
```powershell Windows
# Create a new directory for our project
md weather
cd weather
# Initialize a new kotlin project
gradle init
After running gradle init
, you will be presented with options for creating your project.
Select Application as the project type, Kotlin as the programming language, and Java 17 as the Java version.
Alternatively, you can create a Kotlin application using the IntelliJ IDEA project wizard.
After creating the project, add the following dependencies:
val mcpVersion = "0.4.0"
val slf4jVersion = "2.0.9"
val ktorVersion = "3.1.1"
dependencies {
implementation("io.modelcontextprotocol:kotlin-sdk:$mcpVersion")
implementation("org.slf4j:slf4j-nop:$slf4jVersion")
implementation("io.ktor:ktor-client-content-negotiation:$ktorVersion")
implementation("io.ktor:ktor-serialization-kotlinx-json:$ktorVersion")
}
def mcpVersion = '0.3.0'
def slf4jVersion = '2.0.9'
def ktorVersion = '3.1.1'
dependencies {
implementation "io.modelcontextprotocol:kotlin-sdk:$mcpVersion"
implementation "org.slf4j:slf4j-nop:$slf4jVersion"
implementation "io.ktor:ktor-client-content-negotiation:$ktorVersion"
implementation "io.ktor:ktor-serialization-kotlinx-json:$ktorVersion"
}
Also, add the following plugins to your build script:
plugins {
kotlin("plugin.serialization") version "your_version_of_kotlin"
id("com.github.johnrengelman.shadow") version "8.1.1"
}
plugins {
id 'org.jetbrains.kotlin.plugin.serialization' version 'your_version_of_kotlin'
id 'com.github.johnrengelman.shadow' version '8.1.1'
}
Now let’s dive into building your server.
Add a server initialization function:
// Main function to run the MCP server
fun `run mcp server`() {
// Create the MCP Server instance with a basic implementation
val server = Server(
Implementation(
name = "weather", // Tool name is "weather"
version = "1.0.0" // Version of the implementation
),
ServerOptions(
capabilities = ServerCapabilities(tools = ServerCapabilities.Tools(listChanged = true))
)
)
// Create a transport using standard IO for server communication
val transport = StdioServerTransport(
System.`in`.asInput(),
System.out.asSink().buffered()
)
runBlocking {
server.connect(transport)
val done = Job()
server.onClose {
done.complete()
}
done.join()
}
}
Next, let's add functions and data classes for querying and converting responses from the National Weather Service API:
// Extension function to fetch forecast information for given latitude and longitude
suspend fun HttpClient.getForecast(latitude: Double, longitude: Double): List<String> {
val points = this.get("/points/$latitude,$longitude").body<Points>()
val forecast = this.get(points.properties.forecast).body<Forecast>()
return forecast.properties.periods.map { period ->
"""
${period.name}:
Temperature: ${period.temperature} ${period.temperatureUnit}
Wind: ${period.windSpeed} ${period.windDirection}
Forecast: ${period.detailedForecast}
""".trimIndent()
}
}
// Extension function to fetch weather alerts for a given state
suspend fun HttpClient.getAlerts(state: String): List<String> {
val alerts = this.get("/alerts/active/area/$state").body<Alert>()
return alerts.features.map { feature ->
"""
Event: ${feature.properties.event}
Area: ${feature.properties.areaDesc}
Severity: ${feature.properties.severity}
Description: ${feature.properties.description}
Instruction: ${feature.properties.instruction}
""".trimIndent()
}
}
@Serializable
data class Points(
val properties: Properties
) {
@Serializable
data class Properties(val forecast: String)
}
@Serializable
data class Forecast(
val properties: Properties
) {
@Serializable
data class Properties(val periods: List<Period>)
@Serializable
data class Period(
val number: Int, val name: String, val startTime: String, val endTime: String,
val isDaytime: Boolean, val temperature: Int, val temperatureUnit: String,
val temperatureTrend: String, val probabilityOfPrecipitation: JsonObject,
val windSpeed: String, val windDirection: String,
val shortForecast: String, val detailedForecast: String,
)
}
@Serializable
data class Alert(
val features: List<Feature>
) {
@Serializable
data class Feature(
val properties: Properties
)
@Serializable
data class Properties(
val event: String, val areaDesc: String, val severity: String,
val description: String, val instruction: String?,
)
}
The tool execution handler is responsible for actually executing the logic of each tool. Let's add it:
// Create an HTTP client with a default request configuration and JSON content negotiation
val httpClient = HttpClient {
defaultRequest {
url("https://api.weather.gov")
headers {
append("Accept", "application/geo+json")
append("User-Agent", "WeatherApiClient/1.0")
}
contentType(ContentType.Application.Json)
}
// Install content negotiation plugin for JSON serialization/deserialization
install(ContentNegotiation) { json(Json { ignoreUnknownKeys = true }) }
}
// Register a tool to fetch weather alerts by state
server.addTool(
name = "get_alerts",
description = """
Get weather alerts for a US state. Input is Two-letter US state code (e.g. CA, NY)
""".trimIndent(),
inputSchema = Tool.Input(
properties = JsonObject(
mapOf(
"state" to JsonObject(
mapOf(
"type" to JsonPrimitive("string"),
"description" to JsonPrimitive("Two-letter US state code (e.g. CA, NY)")
)
),
)
),
required = listOf("state")
)
) { request ->
val state = request.arguments["state"]?.jsonPrimitive?.content
if (state == null) {
return@addTool CallToolResult(
content = listOf(TextContent("The 'state' parameter is required."))
)
}
val alerts = httpClient.getAlerts(state)
CallToolResult(content = alerts.map { TextContent(it) })
}
// Register a tool to fetch weather forecast by latitude and longitude
server.addTool(
name = "get_forecast",
description = """
Get weather forecast for a specific latitude/longitude
""".trimIndent(),
inputSchema = Tool.Input(
properties = JsonObject(
mapOf(
"latitude" to JsonObject(mapOf("type" to JsonPrimitive("number"))),
"longitude" to JsonObject(mapOf("type" to JsonPrimitive("number"))),
)
),
required = listOf("latitude", "longitude")
)
) { request ->
val latitude = request.arguments["latitude"]?.jsonPrimitive?.doubleOrNull
val longitude = request.arguments["longitude"]?.jsonPrimitive?.doubleOrNull
if (latitude == null || longitude == null) {
return@addTool CallToolResult(
content = listOf(TextContent("The 'latitude' and 'longitude' parameters are required."))
)
}
val forecast = httpClient.getForecast(latitude, longitude)
CallToolResult(content = forecast.map { TextContent(it) })
}
Finally, implement the main function to run the server:
fun main() = `run mcp server`()
Make sure to run ./gradlew build
to build your server. This is a very important step in getting your server to connect.
Let's now test your server from an existing MCP host, Claude for Desktop.
Claude for Desktop is not yet available on Linux. Linux users can proceed to the [Building a client](/quickstart/client) tutorial to build an MCP client that connects to the server we just built.First, make sure you have Claude for Desktop installed. You can install the latest version here. If you already have Claude for Desktop, make sure it's updated to the latest version.
We'll need to configure Claude for Desktop for whichever MCP servers you want to use.
To do this, open your Claude for Desktop App configuration at ~/Library/Application Support/Claude/claude_desktop_config.json
in a text editor.
Make sure to create the file if it doesn't exist.
For example, if you have VS Code installed:
```bash MacOS/Linux code ~/Library/Application\ Support/Claude/claude_desktop_config.json ```code $env:AppData\Claude\claude_desktop_config.json
You'll then add your servers in the mcpServers
key.
The MCP UI elements will only show up in Claude for Desktop if at least one server is properly configured.
In this case, we'll add our single weather server like so:
```json MacOS/Linux { "mcpServers": { "weather": { "command": "java", "args": [ "-jar", "/ABSOLUTE/PATH/TO/PARENT/FOLDER/weather/build/libs/weather-0.1.0-all.jar" ] } } } ```{
"mcpServers": {
"weather": {
"command": "java",
"args": [
"-jar",
"C:\\PATH\\TO\\PARENT\\FOLDER\\weather\\build\\libs\\weather-0.1.0-all.jar"
]
}
}
}
This tells Claude for Desktop:
- There's an MCP server named "weather"
- Launch it by running
java -jar /ABSOLUTE/PATH/TO/PARENT/FOLDER/weather/build/libs/weather-0.1.0-all.jar
Save the file, and restart Claude for Desktop.
Let's get started with building our weather server! [You can find the complete code for what we'll be building here.](https://github.com/modelcontextprotocol/csharp-sdk/tree/main/samples/QuickstartWeatherServer)This quickstart assumes you have familiarity with:
- C#
- LLMs like Claude
- .NET 8 or higher
- .NET 8 SDK or higher installed.
First, let's install dotnet
if you haven't already. You can download dotnet
from official Microsoft .NET website. Verify your dotnet
installation:
dotnet --version
Now, let's create and set up your project:
# Create a new directory for our project
mkdir weather
cd weather
# Initialize a new C# project
dotnet new console
# Create a new directory for our project
mkdir weather
cd weather
# Initialize a new C# project
dotnet new console
# Add the Model Context Protocol SDK NuGet package
dotnet add package ModelContextProtocol --prerelease
# Add the .NET Hosting NuGet package
dotnet add package Microsoft.Extensions.Hosting
Now let’s dive into building your server.
Open the Program.cs
file in your project and replace its contents with the following code:
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;
using ModelContextProtocol;
using System.Net.Http.Headers;
var builder = Host.CreateEmptyApplicationBuilder(settings: null);
builder.Services.AddMcpServer()
.WithStdioServerTransport()
.WithToolsFromAssembly();
builder.Services.AddSingleton(_ =>
{
var client = new HttpClient() { BaseAddress = new Uri("https://api.weather.gov") };
client.DefaultRequestHeaders.UserAgent.Add(new ProductInfoHeaderValue("weather-tool", "1.0"));
return client;
});
var app = builder.Build();
await app.RunAsync();
This code sets up a basic console application that uses the Model Context Protocol SDK to create an MCP server with standard I/O transport.
Next, define a class with the tool execution handlers for querying and converting responses from the National Weather Service API:
using ModelContextProtocol.Server;
using System.ComponentModel;
using System.Net.Http.Json;
using System.Text.Json;
namespace QuickstartWeatherServer.Tools;
[McpServerToolType]
public static class WeatherTools
{
[McpServerTool, Description("Get weather alerts for a US state.")]
public static async Task<string> GetAlerts(
HttpClient client,
[Description("The US state to get alerts for.")] string state)
{
var jsonElement = await client.GetFromJsonAsync<JsonElement>($"/alerts/active/area/{state}");
var alerts = jsonElement.GetProperty("features").EnumerateArray();
if (!alerts.Any())
{
return "No active alerts for this state.";
}
return string.Join("\n--\n", alerts.Select(alert =>
{
JsonElement properties = alert.GetProperty("properties");
return $"""
Event: {properties.GetProperty("event").GetString()}
Area: {properties.GetProperty("areaDesc").GetString()}
Severity: {properties.GetProperty("severity").GetString()}
Description: {properties.GetProperty("description").GetString()}
Instruction: {properties.GetProperty("instruction").GetString()}
""";
}));
}
[McpServerTool, Description("Get weather forecast for a location.")]
public static async Task<string> GetForecast(
HttpClient client,
[Description("Latitude of the location.")] double latitude,
[Description("Longitude of the location.")] double longitude)
{
var jsonElement = await client.GetFromJsonAsync<JsonElement>($"/points/{latitude},{longitude}");
var periods = jsonElement.GetProperty("properties").GetProperty("periods").EnumerateArray();
return string.Join("\n---\n", periods.Select(period => $"""
{period.GetProperty("name").GetString()}
Temperature: {period.GetProperty("temperature").GetInt32()}°F
Wind: {period.GetProperty("windSpeed").GetString()} {period.GetProperty("windDirection").GetString()}
Forecast: {period.GetProperty("detailedForecast").GetString()}
"""));
}
}
Finally, run the server using the following command:
dotnet run
This will start the server and listen for incoming requests on standard input/output.
Claude for Desktop is not yet available on Linux. Linux users can proceed to the [Building a client](/quickstart/client) tutorial to build an MCP client that connects to the server we just built.First, make sure you have Claude for Desktop installed. You can install the latest version
here. If you already have Claude for Desktop, make sure it's updated to the latest version.
We'll need to configure Claude for Desktop for whichever MCP servers you want to use. To do this, open your Claude for Desktop App configuration at ~/Library/Application Support/Claude/claude_desktop_config.json
in a text editor. Make sure to create the file if it doesn't exist.
For example, if you have VS Code installed:
code ~/Library/Application\ Support/Claude/claude_desktop_config.json
You'll then add your servers in the mcpServers
key. The MCP UI elements will only show up in Claude for Desktop if at least one server is properly configured.
In this case, we'll add our single weather server like so:
This tells Claude for Desktop:
- There's an MCP server named "weather"
- Launch it by running
dotnet run /ABSOLUTE/PATH/TO/PROJECT
Save the file, and restart Claude for Desktop.
Let's make sure Claude for Desktop is picking up the two tools we've exposed in our weather
server. You can do this by looking for the hammer <img src="/images/claude-desktop-mcp-hammer-icon.svg" style={{display: 'inline', margin: 0, height: '1.3em'}} /> icon:
After clicking on the hammer icon, you should see two tools listed:
If your server isn't being picked up by Claude for Desktop, proceed to the Troubleshooting section for debugging tips.
If the hammer icon has shown up, you can now test your server by running the following commands in Claude for Desktop:
- What's the weather in Sacramento?
- What are the active weather alerts in Texas?
When you ask a question:
- The client sends your question to Claude
- Claude analyzes the available tools and decides which one(s) to use
- The client executes the chosen tool(s) through the MCP server
- The results are sent back to Claude
- Claude formulates a natural language response
- The response is displayed to you!
Claude.app logging related to MCP is written to log files in ~/Library/Logs/Claude
:
mcp.log
will contain general logging about MCP connections and connection failures.- Files named
mcp-server-SERVERNAME.log
will contain error (stderr) logging from the named server.
You can run the following command to list recent logs and follow along with any new ones:
# Check Claude's logs for errors
tail -n 20 -f ~/Library/Logs/Claude/mcp*.log
Server not showing up in Claude
- Check your
claude_desktop_config.json
file syntax - Make sure the path to your project is absolute and not relative
- Restart Claude for Desktop completely
Tool calls failing silently
If Claude attempts to use the tools but they fail:
- Check Claude's logs for errors
- Verify your server builds and runs without errors
- Try restarting Claude for Desktop
None of this is working. What do I do?
Please refer to our debugging guide for better debugging tools and more detailed guidance. Error: Failed to retrieve grid point data
This usually means either:
- The coordinates are outside the US
- The NWS API is having issues
- You're being rate limited
Fix:
- Verify you're using US coordinates
- Add a small delay between requests
- Check the NWS API status page
Error: No active alerts for [STATE]
This isn't an error - it just means there are no current weather alerts for that state. Try a different state or check during severe weather.
For more advanced troubleshooting, check out our guide on [Debugging MCP](/docs/tools/debugging) Learn how to build your own MCP client that can connect to your server Check out our gallery of official MCP servers and implementations Learn how to effectively debug MCP servers and integrations Learn how to use LLMs like Claude to speed up your MCP development