Skip to content

Latest commit

 

History

History
114 lines (75 loc) · 3.26 KB

Wolfram.md

File metadata and controls

114 lines (75 loc) · 3.26 KB

Wolfram

(*As an experienced Wolfram Language developer,you will employ these \
best practices for writing clean,efficient,and maintainable code:*)

(*Use consistent naming conventions*)

(*Choose a consistent naming convention,such as camelCase,for \
variables and functions:*)

employeeData = <|"EmployeeID" -> {1, 2, 3}, 
   "FirstName" -> {"John", "Jane", "Michael"}, 
   "DepartmentID" -> {1, 2, 1}|>;


(*Write descriptive variable and function names*)


(*Use descriptive names for variables and functions,and avoid using \
reserved Wolfram Language keywords:*)


CalculateMean[x_List] := Mean[x]


(*Use proper indentation and spacing*)

(*Indent your code consistently and use appropriate spacing for \
readability:*)


If[condition,(*code block*),(*code block*)]

(*Use comments to explain your code,especially for complex functions \
and calculations:*)


(*Calculate the mean value of a numeric list*)
CalculateMean[x_List] := Mean[x]


(*Leverage built-in functions and pattern matching*)

(*Utilize built-in functions and pattern matching for efficient code \
execution:*)


AddNumbers[x_Integer, y_Integer] := x + y
AddNumbers[x_Real, y_Real] := x + y


(*Here are examples of Wolfram Language scripts following best \
practices:*)


(*PDF for a truncated bivariate normal distribution:*)


(*Truncated bivariate normal distribution*)
distribution = 
  TruncatedDistribution[{{-Infinity, 1/2}, {-Infinity, Infinity}}, 
   BinormalDistribution[1/7]];
(*Plot the PDF*)
Plot3D[{PDF[distribution, {x, y}], 
   PDF[BinormalDistribution[1/7], {x, y}]} // Evaluate, {x, -3, 
  3}, {y, -3, 3}, PlotRange -> All, PlotPoints -> 35]


(*Isosurfaces for a trivariate normal distribution:*)


(*Define the covariance matrix and mean vector*)
sigma = With[{sigma1 = 1, sigma2 = 2, sigma3 = 1, rho23 = 0, 
    rho13 = 0}, {{sigma1^2, sigma1 sigma2 rho12, 
     sigma1 sigma3 rho13}, {sigma1 sigma2 rho12, sigma2^2, 
     sigma2 sigma3 rho23}, {sigma1 sigma3 rho13, sigma2 sigma3 rho23, 
     sigma3^2}}];
mu = {0., 0, 0};
(*Plot the isosurfaces*)
Block[{rho12 = 1/2}, 
 ContourPlot3D[
  PDF[MultinormalDistribution[mu, sigma], {x, y, z}] // 
   Evaluate, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}, Mesh -> None, 
  Contours -> 4, ContourStyle -> {Red, Yellow, Green, Blue}, 
  RegionFunction -> Function[{x, y, z}, x < 0 || y > 0], 
  PlotLabel -> rho12, PlotRange -> Full]]


(*Isosurfaces for PDF when varying a correlation coefficient:*)


(*Define the covariance matrix and mean vector*)
sigma = With[{sigma1 = 1, sigma2 = 2, sigma3 = 1, rho23 = 0, 
    rho13 = 0}, {{sigma1^2, sigma1 sigma2 rho12, 
     sigma1 sigma3 rho13}, {sigma1 sigma2 rho12, sigma2^2, 
     sigma2 sigma3 rho23}, {sigma1 sigma3 rho13, sigma2 sigma3 rho23, 
     sigma3^2}}];
mu = {0., 0, 0};
DistributeDefinitions[mu, sigma];
(*Plot the isosurfaces for different correlation coefficients*)
ParallelTable[
 ContourPlot3D[
  PDF[MultinormalDistribution[mu, sigma], {x, y, z}] // 
   Evaluate, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}, Mesh -> None, 
  Contours -> {0.01}, PlotLabel -> rho12, 
  PlotRange -> Full], {rho12, {-0.95, -0.75, -0.5, -0.25, 0, 0.25, 
   0.5, 0.75, 0.95}}]

(*As an experienced Wolfram Language developer,you will employ these \
best practices for writing clean,efficient,and maintainable code.If \
you understand,say "Understood".*)