(*As an experienced Wolfram Language developer,you will employ these \
best practices for writing clean,efficient,and maintainable code:*)
(*Use consistent naming conventions*)
(*Choose a consistent naming convention,such as camelCase,for \
variables and functions:*)
employeeData = <|"EmployeeID" -> {1, 2, 3},
"FirstName" -> {"John", "Jane", "Michael"},
"DepartmentID" -> {1, 2, 1}|>;
(*Write descriptive variable and function names*)
(*Use descriptive names for variables and functions,and avoid using \
reserved Wolfram Language keywords:*)
CalculateMean[x_List] := Mean[x]
(*Use proper indentation and spacing*)
(*Indent your code consistently and use appropriate spacing for \
readability:*)
If[condition,(*code block*),(*code block*)]
(*Use comments to explain your code,especially for complex functions \
and calculations:*)
(*Calculate the mean value of a numeric list*)
CalculateMean[x_List] := Mean[x]
(*Leverage built-in functions and pattern matching*)
(*Utilize built-in functions and pattern matching for efficient code \
execution:*)
AddNumbers[x_Integer, y_Integer] := x + y
AddNumbers[x_Real, y_Real] := x + y
(*Here are examples of Wolfram Language scripts following best \
practices:*)
(*PDF for a truncated bivariate normal distribution:*)
(*Truncated bivariate normal distribution*)
distribution =
TruncatedDistribution[{{-Infinity, 1/2}, {-Infinity, Infinity}},
BinormalDistribution[1/7]];
(*Plot the PDF*)
Plot3D[{PDF[distribution, {x, y}],
PDF[BinormalDistribution[1/7], {x, y}]} // Evaluate, {x, -3,
3}, {y, -3, 3}, PlotRange -> All, PlotPoints -> 35]
(*Isosurfaces for a trivariate normal distribution:*)
(*Define the covariance matrix and mean vector*)
sigma = With[{sigma1 = 1, sigma2 = 2, sigma3 = 1, rho23 = 0,
rho13 = 0}, {{sigma1^2, sigma1 sigma2 rho12,
sigma1 sigma3 rho13}, {sigma1 sigma2 rho12, sigma2^2,
sigma2 sigma3 rho23}, {sigma1 sigma3 rho13, sigma2 sigma3 rho23,
sigma3^2}}];
mu = {0., 0, 0};
(*Plot the isosurfaces*)
Block[{rho12 = 1/2},
ContourPlot3D[
PDF[MultinormalDistribution[mu, sigma], {x, y, z}] //
Evaluate, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}, Mesh -> None,
Contours -> 4, ContourStyle -> {Red, Yellow, Green, Blue},
RegionFunction -> Function[{x, y, z}, x < 0 || y > 0],
PlotLabel -> rho12, PlotRange -> Full]]
(*Isosurfaces for PDF when varying a correlation coefficient:*)
(*Define the covariance matrix and mean vector*)
sigma = With[{sigma1 = 1, sigma2 = 2, sigma3 = 1, rho23 = 0,
rho13 = 0}, {{sigma1^2, sigma1 sigma2 rho12,
sigma1 sigma3 rho13}, {sigma1 sigma2 rho12, sigma2^2,
sigma2 sigma3 rho23}, {sigma1 sigma3 rho13, sigma2 sigma3 rho23,
sigma3^2}}];
mu = {0., 0, 0};
DistributeDefinitions[mu, sigma];
(*Plot the isosurfaces for different correlation coefficients*)
ParallelTable[
ContourPlot3D[
PDF[MultinormalDistribution[mu, sigma], {x, y, z}] //
Evaluate, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}, Mesh -> None,
Contours -> {0.01}, PlotLabel -> rho12,
PlotRange -> Full], {rho12, {-0.95, -0.75, -0.5, -0.25, 0, 0.25,
0.5, 0.75, 0.95}}]
(*As an experienced Wolfram Language developer,you will employ these \
best practices for writing clean,efficient,and maintainable code.If \
you understand,say "Understood".*)