forked from arduino/ArduinoCore-samd
-
Notifications
You must be signed in to change notification settings - Fork 119
/
Copy pathSPI.cpp
570 lines (483 loc) · 19.1 KB
/
SPI.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
/*
* SPI Master library for Arduino Zero.
* Copyright (c) 2015 Arduino LLC
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "SPI.h"
#include <Arduino.h>
#include <wiring_private.h>
#include <assert.h>
#ifdef USE_TINYUSB
// For Serial when selecting TinyUSB
#include <Adafruit_TinyUSB.h>
#endif
#define SPI_IMODE_NONE 0
#define SPI_IMODE_EXTINT 1
#define SPI_IMODE_GLOBAL 2
const SPISettings DEFAULT_SPI_SETTINGS = SPISettings();
SPIClass::SPIClass(SERCOM *p_sercom, uint8_t uc_pinMISO, uint8_t uc_pinSCK, uint8_t uc_pinMOSI, SercomSpiTXPad PadTx, SercomRXPad PadRx)
{
initialized = false;
assert(p_sercom != NULL);
_p_sercom = p_sercom;
// pins
_uc_pinMiso = uc_pinMISO;
_uc_pinSCK = uc_pinSCK;
_uc_pinMosi = uc_pinMOSI;
// SERCOM pads
_padTx=PadTx;
_padRx=PadRx;
}
void SPIClass::begin()
{
if(!initialized) {
interruptMode = SPI_IMODE_NONE;
interruptSave = 0;
interruptMask = 0;
initialized = true;
}
if(!use_dma) {
dmaAllocate();
}
// PIO init
pinPeripheral(_uc_pinMiso, g_APinDescription[_uc_pinMiso].ulPinType);
pinPeripheral(_uc_pinSCK, g_APinDescription[_uc_pinSCK].ulPinType);
pinPeripheral(_uc_pinMosi, g_APinDescription[_uc_pinMosi].ulPinType);
config(DEFAULT_SPI_SETTINGS);
}
void SPIClass::config(SPISettings settings)
{
_p_sercom->disableSPI();
_p_sercom->initSPI(_padTx, _padRx, SPI_CHAR_SIZE_8_BITS, settings.bitOrder);
_p_sercom->initSPIClock(settings.dataMode, settings.clockFreq);
_p_sercom->enableSPI();
}
void SPIClass::end()
{
_p_sercom->resetSPI();
initialized = false;
// Add DMA deallocation here
}
#ifndef interruptsStatus
#define interruptsStatus() __interruptsStatus()
static inline unsigned char __interruptsStatus(void) __attribute__((always_inline, unused));
static inline unsigned char __interruptsStatus(void)
{
// See http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0497a/CHDBIBGJ.html
return (__get_PRIMASK() ? 0 : 1);
}
#endif
void SPIClass::usingInterrupt(int interruptNumber)
{
if ((interruptNumber == NOT_AN_INTERRUPT) || (interruptNumber == EXTERNAL_INT_NMI))
return;
uint8_t irestore = interruptsStatus();
noInterrupts();
if (interruptNumber >= EXTERNAL_NUM_INTERRUPTS)
interruptMode = SPI_IMODE_GLOBAL;
else
{
interruptMode |= SPI_IMODE_EXTINT;
interruptMask |= (1 << g_APinDescription[interruptNumber].ulExtInt);
}
if (irestore)
interrupts();
}
void SPIClass::notUsingInterrupt(int interruptNumber)
{
if ((interruptNumber == NOT_AN_INTERRUPT) || (interruptNumber == EXTERNAL_INT_NMI))
return;
if (interruptMode & SPI_IMODE_GLOBAL)
return; // can't go back, as there is no reference count
uint8_t irestore = interruptsStatus();
noInterrupts();
interruptMask &= ~(1 << g_APinDescription[interruptNumber].ulExtInt);
if (interruptMask == 0)
interruptMode = SPI_IMODE_NONE;
if (irestore)
interrupts();
}
void SPIClass::beginTransaction(SPISettings settings)
{
if (interruptMode != SPI_IMODE_NONE)
{
if (interruptMode & SPI_IMODE_GLOBAL)
{
interruptSave = interruptsStatus();
noInterrupts();
}
else if (interruptMode & SPI_IMODE_EXTINT)
EIC->INTENCLR.reg = EIC_INTENCLR_EXTINT(interruptMask);
}
config(settings);
}
void SPIClass::endTransaction(void)
{
if (interruptMode != SPI_IMODE_NONE)
{
if (interruptMode & SPI_IMODE_GLOBAL)
{
if (interruptSave)
interrupts();
}
else if (interruptMode & SPI_IMODE_EXTINT)
EIC->INTENSET.reg = EIC_INTENSET_EXTINT(interruptMask);
}
}
void SPIClass::setBitOrder(BitOrder order)
{
if (order == LSBFIRST) {
_p_sercom->setDataOrderSPI(LSB_FIRST);
} else {
_p_sercom->setDataOrderSPI(MSB_FIRST);
}
}
void SPIClass::setDataMode(uint8_t mode)
{
switch (mode)
{
case SPI_MODE0:
_p_sercom->setClockModeSPI(SERCOM_SPI_MODE_0);
break;
case SPI_MODE1:
_p_sercom->setClockModeSPI(SERCOM_SPI_MODE_1);
break;
case SPI_MODE2:
_p_sercom->setClockModeSPI(SERCOM_SPI_MODE_2);
break;
case SPI_MODE3:
_p_sercom->setClockModeSPI(SERCOM_SPI_MODE_3);
break;
default:
break;
}
}
void SPIClass::setClockDivider(uint8_t div)
{
if(div < SPI_MIN_CLOCK_DIVIDER) {
_p_sercom->setBaudrateSPI(SPI_MIN_CLOCK_DIVIDER);
} else {
_p_sercom->setBaudrateSPI(div);
}
}
byte SPIClass::transfer(uint8_t data)
{
return _p_sercom->transferDataSPI(data);
}
uint16_t SPIClass::transfer16(uint16_t data) {
union { uint16_t val; struct { uint8_t lsb; uint8_t msb; }; } t;
t.val = data;
if (_p_sercom->getDataOrderSPI() == LSB_FIRST) {
t.lsb = transfer(t.lsb);
t.msb = transfer(t.msb);
} else {
t.msb = transfer(t.msb);
t.lsb = transfer(t.lsb);
}
return t.val;
}
void SPIClass::transfer(void *buf, size_t count)
{
uint8_t *buffer = reinterpret_cast<uint8_t *>(buf);
for (size_t i=0; i<count; i++) {
*buffer = transfer(*buffer);
buffer++;
}
}
// DMA-based SPI transfer() function ---------------------------------------
// IMPORTANT: references to 65535 throughout the DMA code are INTENTIONAL.
// DO NOT try to 'fix' by changing to 65536, or large transfers will fail!
// The BTCNT value of a DMA descriptor is an unsigned 16-bit value with a
// max of 65535. Larger transfers are handled by linked descriptors.
// Pointer to SPIClass object, one per DMA channel. This allows the
// DMA callback (which has to exist outside the class context) to have
// a reference back to the originating SPIClass object.
static SPIClass *spiPtr[DMAC_CH_NUM] = { 0 }; // Legit inits list to NULL
void SPIClass::dmaCallback(Adafruit_ZeroDMA *dma) {
// dmaCallback() receives an Adafruit_ZeroDMA object. From this we can get
// a channel number (0 to DMAC_CH_NUM-1, always unique per ZeroDMA object),
// then locate the originating SPIClass object using array lookup, setting
// the dma_busy element 'false' to indicate end of transfer. Doesn't matter
// if it's a read or write transfer...both channels get pointers to it.
spiPtr[dma->getChannel()]->dma_busy = false;
}
// For read-only and read+write transfers, a callback is assigned only
// to the read channel to indicate end-of-transfer, and the write channel's
// callback is assigned to this nonsense function (for reasons I'm not
// entirely sure of, setting the callback to NULL doesn't work).
static void dmaDoNothingCallback(Adafruit_ZeroDMA *dma) { (void)dma; }
// This could've gone in begin(), but for the sake of organization...
void SPIClass::dmaAllocate(void) {
// In order to support fully non-blocking SPI transfers, DMA descriptor
// lists must be created for the input and/or output data. Rather than
// do this dynamically with every transfer, the lists are allocated once
// on SPI init. Maximum list size is finite and knowable -- transfers to
// or from RAM or from flash memory will never exceed the corresponding
// memory size (if they do, you have bigger problems). Descriptors
// aren't large and there's usually only a handful to a dozen, so this
// isn't an excessive burden in exchange for big non-blocking transfers.
uint32_t maxWriteBytes = FLASH_SIZE; // Writes can't exceed all of flash
#if defined(__SAMD51__)
uint32_t maxReadBytes = HSRAM_SIZE; // Reads can't exceed all of RAM
#else
uint32_t maxReadBytes = HMCRAMC0_SIZE;
#endif
if(maxReadBytes > maxWriteBytes) { // I don't think any SAMD devices
maxWriteBytes = maxReadBytes; // have RAM > flash, but just in case
}
// VITAL to alloc read channel first, assigns it a higher DMA priority!
if(readChannel.allocate() == DMA_STATUS_OK) {
if(writeChannel.allocate() == DMA_STATUS_OK) {
// Both DMA channels (read and write) allocated successfully,
// set up transfer triggers and other basics...
// readChannel callback only needs to be set up once.
// Unlike the write callback which may get switched on or off,
// read callback stays put. In certain cases the read DMA job
// just isn't started and the callback is a non-issue then.
readChannel.setTrigger(getDMAC_ID_RX());
readChannel.setAction(DMA_TRIGGER_ACTON_BEAT);
readChannel.setCallback(dmaCallback);
spiPtr[readChannel.getChannel()] = this;
writeChannel.setTrigger(getDMAC_ID_TX());
writeChannel.setAction(DMA_TRIGGER_ACTON_BEAT);
spiPtr[writeChannel.getChannel()] = this;
// One descriptor per channel has already been allocated
// in Adafruit_ZeroDMA, this just gets pointers to them...
firstReadDescriptor = readChannel.addDescriptor(
(void *)getDataRegister(), // Source address (SPI data reg)
NULL, // Dest address (set later)
0, // Count (set later)
DMA_BEAT_SIZE_BYTE, // Bytes/hwords/words
false, // Don't increment source address
true); // Increment dest address
firstWriteDescriptor = writeChannel.addDescriptor(
NULL, // Source address (set later)
(void *)getDataRegister(), // Dest (SPI data register)
0, // Count (set later)
DMA_BEAT_SIZE_BYTE, // Bytes/hwords/words
true, // Increment source address
false); // Don't increment dest address
// This is the number of EXTRA descriptors beyond the first.
int numReadDescriptors = ((maxReadBytes + 65534) / 65535) - 1;
int numWriteDescriptors = ((maxWriteBytes + 65534) / 65535) - 1;
int totalDescriptors = numReadDescriptors + numWriteDescriptors;
if(totalDescriptors <= 0) { // Don't need extra descriptors,
use_dma = true; // channels are allocated, we're good.
} else { // Else allocate extra descriptor lists...
// Although DMA descriptors are technically a linked list, we just
// allocate a chunk all at once, and finesse the pointers later.
if((extraReadDescriptors = (DmacDescriptor *)malloc(
totalDescriptors * sizeof(DmacDescriptor)))) {
use_dma = true; // Everything allocated successfully
extraWriteDescriptors = &extraReadDescriptors[numReadDescriptors];
// Initialize descriptors (copy from first ones)
// cast to void* to suppress warning: with no trivial copy-assignment [-Wclass-memaccess]
for(int i=0; i<numReadDescriptors; i++) {
memcpy((void*) &extraReadDescriptors[i], firstReadDescriptor,
sizeof(DmacDescriptor));
}
for(int i=0; i<numWriteDescriptors; i++) {
memcpy((void*) &extraWriteDescriptors[i], firstWriteDescriptor,
sizeof(DmacDescriptor));
}
} // end malloc
} // end extra descriptor check
if(use_dma) { // If everything allocated successfully,
return; // then we're done here.
} // Otherwise clean up interim allocations...
writeChannel.free();
} // end writeChannel alloc
readChannel.free();
} // end readChannel alloc
// NOT FATAL if channel or descriptor allocation fails.
// transfer() function will fall back on a manual byte-by-byte loop.
}
void SPIClass::transfer(const void *txbuf, void *rxbuf, size_t count,
bool block) {
if((!txbuf && !rxbuf) || !count) { // Validate inputs
return;
}
// OK to assume now that txbuf and/or rxbuf are non-NULL, an if/else is
// often sufficient, don't need else-ifs for everything buffer related.
uint8_t *txbuf8 = (uint8_t *)txbuf; // Must cast to byte size
uint8_t *rxbuf8 = (uint8_t *)rxbuf; // for pointer math
if(use_dma) { // DMA-BASED TRANSFER YAY ----------------------------------
static const uint8_t dum = 0xFF; // Dummy byte for read-only xfers
// Set up DMA descriptor lists -----------------------------------------
DmacDescriptor *rDesc = firstReadDescriptor;
DmacDescriptor *wDesc = firstWriteDescriptor;
int descIdx = 0; // Index into extra descriptor lists
while(count) { // Counts down to end of transfer
uint32_t bytesThisDescriptor = count;
if(bytesThisDescriptor > 65535) { // Limit each descriptor
bytesThisDescriptor = 65535; // to 65535 (not 65536) bytes
}
rDesc->BTCNT.reg = wDesc->BTCNT.reg = bytesThisDescriptor;
if(rxbuf) { // Read-only or read+write
// Auto-inc addresses in DMA descriptors must point to END of data.
// Buf pointers would advance at end of loop anyway, do it now...
rxbuf8 += bytesThisDescriptor;
rDesc->DSTADDR.reg = (uint32_t)rxbuf8;
}
if(txbuf) { // Write-only or read+write
txbuf8 += bytesThisDescriptor; // Same as above
wDesc->SRCADDR.reg = (uint32_t)txbuf8;
wDesc->BTCTRL.bit.SRCINC = 1; // Increment source pointer
} else { // Read-only requires dummy write
wDesc->SRCADDR.reg = (uint32_t)&dum;
wDesc->BTCTRL.bit.SRCINC = 0; // Don't increment source pointer
}
count -= bytesThisDescriptor;
if(count) { // Still more data?
// Link to next descriptors. Extra descriptors are IN ADDITION
// to first, so it's safe and correct that descIdx starts at 0.
rDesc->DESCADDR.reg = (uint32_t)&extraReadDescriptors[descIdx];
wDesc->DESCADDR.reg = (uint32_t)&extraWriteDescriptors[descIdx];
rDesc = &extraReadDescriptors[descIdx]; // Update pointers to
wDesc = &extraWriteDescriptors[descIdx]; // next descriptors
descIdx++;
// A write-only transfer doesn't use the read descriptor list, but
// it's quicker to build it (full of nonsense) anyway than to check.
} else { // No more data, end descriptor linked lists
rDesc->DESCADDR.reg = wDesc->DESCADDR.reg = 0;
}
}
// Set up DMA transfer job(s) ------------------------------------------
if(rxbuf) { // Read+write or read-only
// End-of-read callback is already set up, disable write CB, start job
writeChannel.setCallback(dmaDoNothingCallback);
readChannel.startJob();
} else { // Write-only, use end-of-write callback
writeChannel.setCallback(dmaCallback);
}
// Run DMA jobs, blocking if requested ---------------------------------
dma_busy = true;
writeChannel.startJob(); // All xfers, even read-only, need write job.
if(block) { // If blocking transfer requested,
while(dma_busy); // wait for job to finish
}
} else { // NON-DMA FALLBACK ---------------------------------------------
if(txbuf8) {
if(rxbuf8) { // Write + read simultaneously
while(count--) {
*rxbuf8++ = _p_sercom->transferDataSPI(*txbuf8++);
}
} else { // Write only
while(count--) {
(void)_p_sercom->transferDataSPI(*txbuf8++);
}
}
} else { // Read only
while(count--) {
*rxbuf8++ = _p_sercom->transferDataSPI(0xFF);
}
}
} // end non-DMA
}
// Waits for a prior in-background DMA transfer to complete.
void SPIClass::waitForTransfer(void) {
while(dma_busy);
}
/* returns the current DMA transfer status to allow non-blocking polling */
bool SPIClass::isBusy(void) {
return dma_busy;
}
// End DMA-based SPI transfer() code ---------------------------------------
void SPIClass::attachInterrupt() {
// Should be enableInterrupt()
}
void SPIClass::detachInterrupt() {
// Should be disableInterrupt()
}
// SPI DMA lookup works on both SAMD21 and SAMD51
static const struct {
volatile uint32_t *data_reg;
int dmac_id_tx;
int dmac_id_rx;
} sercomData[] = {
{ &SERCOM0->SPI.DATA.reg, SERCOM0_DMAC_ID_TX, SERCOM0_DMAC_ID_RX },
{ &SERCOM1->SPI.DATA.reg, SERCOM1_DMAC_ID_TX, SERCOM1_DMAC_ID_RX },
{ &SERCOM2->SPI.DATA.reg, SERCOM2_DMAC_ID_TX, SERCOM2_DMAC_ID_RX },
{ &SERCOM3->SPI.DATA.reg, SERCOM3_DMAC_ID_TX, SERCOM3_DMAC_ID_RX },
#if defined(SERCOM4)
{ &SERCOM4->SPI.DATA.reg, SERCOM4_DMAC_ID_TX, SERCOM4_DMAC_ID_RX },
#endif
#if defined(SERCOM5)
{ &SERCOM5->SPI.DATA.reg, SERCOM5_DMAC_ID_TX, SERCOM5_DMAC_ID_RX },
#endif
#if defined(SERCOM6)
{ &SERCOM6->SPI.DATA.reg, SERCOM6_DMAC_ID_TX, SERCOM6_DMAC_ID_RX },
#endif
#if defined(SERCOM7)
{ &SERCOM7->SPI.DATA.reg, SERCOM7_DMAC_ID_TX, SERCOM7_DMAC_ID_RX },
#endif
};
volatile uint32_t *SPIClass::getDataRegister(void) {
int8_t idx = _p_sercom->getSercomIndex();
return (idx >= 0) ? sercomData[idx].data_reg: NULL;
}
int SPIClass::getDMAC_ID_TX(void) {
int8_t idx = _p_sercom->getSercomIndex();
return (idx >= 0) ? sercomData[idx].dmac_id_tx : -1;
}
int SPIClass::getDMAC_ID_RX(void) {
int8_t idx = _p_sercom->getSercomIndex();
return (idx >= 0) ? sercomData[idx].dmac_id_rx : -1;
}
#if defined(__SAMD51__)
// Set the SPI device's SERCOM clock CORE and SLOW clock sources.
// SercomClockSource values are an enumeration in SERCOM.h.
// This works on SAMD51 only. On SAMD21, a dummy function is declared
// in SPI.h which compiles to nothing, so user code doesn't need to check
// and conditionally compile lines for different architectures.
void SPIClass::setClockSource(SercomClockSource clk) {
int8_t idx = _p_sercom->getSercomIndex();
_p_sercom->setClockSource(idx, clk, true); // true = set core clock
_p_sercom->setClockSource(idx, clk, false); // false = set slow clock
}
#endif // end __SAMD51__
#if SPI_INTERFACES_COUNT > 0
/* In case new variant doesn't define these macros,
* we put here the ones for Arduino Zero.
*
* These values should be different on some variants!
*
* The SPI PAD values can be found in cores/arduino/SERCOM.h:
* - SercomSpiTXPad
* - SercomRXPad
*/
#ifndef PERIPH_SPI
#define PERIPH_SPI sercom4
#define PAD_SPI_TX SPI_PAD_2_SCK_3
#define PAD_SPI_RX SERCOM_RX_PAD_0
#endif // PERIPH_SPI
SPIClass SPI (&PERIPH_SPI, PIN_SPI_MISO, PIN_SPI_SCK, PIN_SPI_MOSI, PAD_SPI_TX, PAD_SPI_RX);
#endif
#if SPI_INTERFACES_COUNT > 1
SPIClass SPI1(&PERIPH_SPI1, PIN_SPI1_MISO, PIN_SPI1_SCK, PIN_SPI1_MOSI, PAD_SPI1_TX, PAD_SPI1_RX);
#endif
#if SPI_INTERFACES_COUNT > 2
SPIClass SPI2(&PERIPH_SPI2, PIN_SPI2_MISO, PIN_SPI2_SCK, PIN_SPI2_MOSI, PAD_SPI2_TX, PAD_SPI2_RX);
#endif
#if SPI_INTERFACES_COUNT > 3
SPIClass SPI3(&PERIPH_SPI3, PIN_SPI3_MISO, PIN_SPI3_SCK, PIN_SPI3_MOSI, PAD_SPI3_TX, PAD_SPI3_RX);
#endif
#if SPI_INTERFACES_COUNT > 4
SPIClass SPI4(&PERIPH_SPI4, PIN_SPI4_MISO, PIN_SPI4_SCK, PIN_SPI4_MOSI, PAD_SPI4_TX, PAD_SPI4_RX);
#endif
#if SPI_INTERFACES_COUNT > 5
SPIClass SPI5(&PERIPH_SPI5, PIN_SPI5_MISO, PIN_SPI5_SCK, PIN_SPI5_MOSI, PAD_SPI5_TX, PAD_SPI5_RX);
#endif