-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAVLTreeDeletion.cpp
320 lines (261 loc) · 6.94 KB
/
AVLTreeDeletion.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
/*
Given an AVL tree and N values to be deleted from the tree. Write a function to delete a given value from the tree. All the N values which needs to be deleted are passed one by one as input data by driver code itself, you are asked to return the root of modified tree after deleting the value.
Example 1:
Tree =
4
/ \
2 6
/ \ / \
1 3 5 7
N = 4
Values to be deleted = {4,1,3,6}
Input: Value to be deleted = 4
Output:
5
/ \
2 6
/ \ \
1 3 7
Input: Value to be deleted = 1
Output:
5
/ \
2 6
\ \
3 7
Input: Value to be deleted = 3
Output:
5
/ \
2 6
\
7
Input: Value to be deleted = 6
Output:
5
/ \
2 7
Your Task:
You dont need to read input or print anything. Complete the function delelteNode() which takes the root of the tree and the value of the node to be deleted as input parameters and returns the root of the modified tree.
Note: The tree will be checked after each deletion.
If it violates the properties of balanced BST, an error message will be printed followed by the inorder traversal of the tree at that moment.
If instead all deletion are successful, inorder traversal of tree will be printed.
If every single node is deleted from tree, 'null' will be printed.
Expected Time Complexity: O(height of tree)
Expected Auxiliary Space: O(height of tree)
*/
/// Height Concept + Self-Balancing (Left/Right Rotate) + inorderSuccessor + Recursion
//{ Driver Code Starts
//
#include <bits/stdc++.h>
using namespace std;
struct Node
{
int data, height;
Node *left, *right;
Node(int x)
{
data = x;
height = 1;
left = right = NULL;
}
};
int setHeights(Node* n)
{
if(!n) return 0;
n->height = 1 + max( setHeights(n->left) , setHeights(n->right) );
return n->height;
}
Node* buildTree(string str)
{
// Corner Case
if(str.length() == 0 || str[0] == 'N')
return NULL;
// Creating vector of strings from input
// string after spliting by space
vector<string> ip;
istringstream iss(str);
for(string str; iss >> str; )
ip.push_back(str);
// Create the root of the tree
Node* root = new Node(stoi(ip[0]));
// Push the root to the queue
queue<Node*> queue;
queue.push(root);
// Starting from the second element
int i = 1;
while(!queue.empty() && i < ip.size()) {
// Get and remove the front of the queue
Node* currNode = queue.front();
queue.pop();
// Get the current node's value from the string
string currVal = ip[i];
// If the left child is not null
if(currVal != "N") {
// Create the left child for the current node
currNode->left = new Node(stoi(currVal));
// Push it to the queue
queue.push(currNode->left);
}
// For the right child
i++;
if(i >= ip.size())
break;
currVal = ip[i];
// If the right child is not null
if(currVal != "N") {
// Create the right child for the current node
currNode->right = new Node(stoi(currVal));
// Push it to the queue
queue.push(currNode->right);
}
i++;
}
setHeights(root);
return root;
}
bool isBST(Node *n, int lower, int upper)
{
if(!n) return 1;
if( n->data <= lower || n->data >= upper ) return 0;
return isBST(n->left, lower, n->data) && isBST(n->right, n->data, upper) ;
}
pair<int,bool> isBalanced(Node* n)
{
if(!n) return pair<int,bool> (0,1);
pair<int,bool> l = isBalanced(n->left);
pair<int,bool> r = isBalanced(n->right);
if( abs(l.first - r.first) > 1 ) return pair<int,bool> (0,0);
return pair<int,bool> ( 1 + max(l.first , r.first) , l.second && r.second );
}
bool isBalancedBST(Node* root)
{
if( !isBST(root, INT_MIN, INT_MAX) )
cout<< "BST voilated, inorder traversal : ";
else if ( ! isBalanced(root).second )
cout<< "Unbalanced BST, inorder traversal : ";
else return 1;
return 0;
}
void printInorder(Node* n)
{
if(!n) return;
printInorder(n->left);
cout<< n->data << " ";
printInorder(n->right);
}
struct Node* deleteNode(struct Node* root, int data);
int main()
{
int t;
cin>>t;
getchar();
while(t--)
{
string s;
getline(cin,s);
Node* root = buildTree(s);
int n;
cin>> n;
int ip[n];
for(int i=0; i<n; i++)
cin>> ip[i];
for(int i=0; i<n; i++)
{
root = deleteNode(root, ip[i]);
if( !isBalancedBST(root) )
break;
}
if(root==NULL)
cout<<"null";
else
printInorder(root);
cout<< endl;
getline(cin,s); // to deal with newline char
}
return 1;
}
// } Driver Code Ends
/* Node is as follows:
struct Node
{
int data, height;
Node *left, *right;
Node(int x)
{
data = x;
height = 1;
left = right = NULL;
}
};
*/
int height(Node *root){
if(!root) return 0;
int lh=height(root->left);
int rh=height(root->right);
return 1+max(lh,rh);
}
int getBalance(Node *root){
if(!root) return 0;
int lh=height(root->left);
int rh=height(root->right);
return lh-rh;
}
Node *leftRotate(Node *root){
Node *temp1=root->right;
Node *temp2=temp1->left;
temp1->left=root;
root->right=temp2;
return temp1;
}
Node *rightRotate(Node *root){
Node *temp1=root->left;
Node *temp2=temp1->right;
temp1->right=root;
root->left=temp2;
return temp1;
}
Node *inorderSuccessor(Node *root){
while(root and root->left){
root=root->left;
}
return root;
}
Node* deleteNode(Node* root, int data)
{
if(!root) return NULL;
if(root->data > data){
root->left=deleteNode(root->left,data);
}
else if(root->data < data){
root->right=deleteNode(root->right,data);
}else{
if(!root->left){
Node *temp=root;
root=root->right;
delete temp;
}else if(!root->right){
Node *temp=root;
root=root->left;
delete temp;
}else{
Node *temp=inorderSuccessor(root->right);
root->data=temp->data;
root->right=deleteNode(root->right,temp->data);
}
}
if(!root) return root;
int balance=getBalance(root);
if(balance>1 and getBalance(root->left)>=0){
return rightRotate(root);
}else if(balance>1 and getBalance(root->left)<0){
root->left=leftRotate(root->left);
return rightRotate(root);
}else if(balance<-1 and getBalance(root->right)<=0){
return leftRotate(root);
}else if(balance<-1 and getBalance(root->right)>0){
root->right=rightRotate(root->right);
return leftRotate(root);
}
return root;
}