-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAll_Views_BinaryTree.cpp
289 lines (250 loc) · 7.79 KB
/
All_Views_BinaryTree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
/// All Views Binary Tree
/// Bottom View (Idea: Consider axis about root, left side -> -ve and right side -> +ve , use map to store the latest occurrence in that level)
class Solution {
public:
vector <int> bottomView(Node *root) {
vector<int> result;
if(!root) return result;
map<int,int> mp; /// Col, val
queue<pair<Node*,int>> q;
q.push({root,0}); /// Queue {Node and Level (-ve , 0, +ve}
while(!q.empty()){
int sz=q.size();
for(int i=0;i<sz;i++){
Node *temp=q.front().first;
int level=q.front().second;
q.pop();
mp[level]=temp->data;
if(temp->left) q.push({temp->left,level-1});
if(temp->right) q.push({temp->right,level+1});
}
}
for(auto it : mp){
result.push_back(it.second);
}
return result;
}
};
/// Top View (Idea: Consider axis about root, left side -> -ve and right side -> +ve , use map to store the first occurrence in that level by checking its already presence or not)
class Solution
{
public:
//Function to return a list of nodes visible from the top view
//from left to right in Binary Tree.
vector<int> topView(Node *root)
{
vector<int> result;
if(!root) return result;
map<int,int> mp; // col,val
queue<pair<Node*,int>> q;
q.push({root,0});
while(!q.empty()){
int sz=q.size();
for(int i=0;i<sz;i++){
Node *temp=q.front().first;
int level=q.front().second;
q.pop();
if(mp.find(level)==mp.end()) mp[level]=temp->data;
if(temp->left) q.push({temp->left,level-1});
if(temp->right) q.push({temp->right,level+1});
}
}
for(auto it : mp){
result.push_back(it.second);
}
return result;
}
};
/// Vertical Order Traversal (View) // Idea: Maintaining Map (ordered), keep pushing into the level and return into vector afterwards
vector<int> verticalOrder(Node *root)
{
vector<int> result;
if(!root) return result;
map<int,vector<int>> mp; // col, vector
queue<pair<Node*,int>> q; // Node, level
q.push({root,0});
while(!q.empty()){
int sz=q.size();
for(int i=0;i<sz;i++){
Node *temp=q.front().first;
int level=q.front().second;
q.pop();
mp[level].push_back(temp->data);
if(temp->left) q.push({temp->left,level-1});
if(temp->right) q.push({temp->right,level+1});
}
}
for(auto it : mp){
vector<int> temp=it.second;
for(auto ele : temp){
result.push_back(ele);
}
}
return result;
}
/// Multiset and map based solution (Optimal)
class Solution {
public:
vector<vector<int>> verticalTraversal(TreeNode* root) {
map<int, map<int, multiset<int>>> nodes;
queue<pair<TreeNode*, pair<int,int>>> q;
q.push({root, {0,0}});
while(!q.empty()){
auto p=q.front();
q.pop();
TreeNode* node=p.first;
int x=p.second.first, y=p.second.second;
nodes[x][y].insert(node->val);
if(node->left){
q.push({node->left, {x-1, y+1}});
}
if(node->right){
q.push({node->right, {x+1, y+1}});
}
}
vector<vector<int>> ans;
for(auto p: nodes){
vector<int> col;
for(auto q: p.second){
col.insert(col.end(), q.second.begin(), q.second.end());
}
ans.push_back(col);
}
return ans;
}
};
/// Left Side View (Idea: recursion, start from root, go to left->left , if not then only go left->right,
class Solution{
public:
vector<int> leftSideView(TreeNode* root){
vector<int> ans;
helper(root, 0, ans);
return ans;
}
void helper(TreeNode* root,int level,vector<int> &ans){
if(root==NULL)
return ;
if(ans.size()==level)
ans.push_back(root->val);
helper(root->left, level+1, ans);
helper(root->right, level+1, ans);
}
};
/// Left Side View (Queue)
class Solution {
public:
vector<int> rightSideView(TreeNode* root) {
vector<int> res;
if(!root)
return res;
queue<TreeNode*> q;
q.push(root);
while(!q.empty())
{
int n=q.size();
for(int i=0;i<n;i++)
{
TreeNode * node = q.front();
q.pop();
if(node->right)
q.push(node->right);
if(node->left)
q.push(node->left);
if(i==n-1)
res.push_back(node->val);
}
}
return res;
}
};
/// Right Side View (Idea: recursion, start from root, go to right->right , if not then only go right->left,
class Solution {
public:
void helper(TreeNode *root, int level, vector<int> &result){
if(!root) return;
if(result.size()==level){
result.push_back(root->val);
}
helper(root->right,level+1,result);
helper(root->left,level+1,result);
}
vector<int> rightSideView(TreeNode* root) {
vector<int> result;
if(!root) return result;
helper(root,0,result);
return result;
}
};
/// Right Side View (Queue)
class Solution {
public:
vector<int> rightSideView(TreeNode* root) {
vector<int> res;
if(!root)
return res;
queue<TreeNode*> q;
q.push(root);
while(!q.empty())
{
int n=q.size();
for(int i=0;i<n;i++)
{
TreeNode * node = q.front();
q.pop();
if(node->left)
q.push(node->left);
if(node->right)
q.push(node->right);
if(i==n-1)
res.push_back(node->val);
}
}
return res;
}
};
/// Boundary View : (Idea : Combination of left side + leaf nodes + right side view)
bool isLeaf(Node *root){
if(!root->left and !root->right) return true;
return false;
}
void addLeftBoundary(Node *root, vector<int> &result){
Node *curr=root->left;
while(curr){
if(!isLeaf(curr)) result.push_back(curr->data);
if(curr->left) curr=curr->left;
else curr=curr->right;
}
}
void addLeaves(Node *root, vector<int> &result){
if(isLeaf(root)){
result.push_back(root->data);
return;
}
if(root->left) addLeaves(root->left,result);
if(root->right) addLeaves(root->right,result);
}
void addRightBoundary(Node *root, vector<int> &result){
Node *curr=root->right;
vector<int> temp;
while(curr){
if(!isLeaf(curr)) temp.push_back(curr->data);
if(curr->right) curr=curr->right;
else curr=curr->left;
}
for(int i=temp.size()-1;i>=0;i--){
result.push_back(temp[i]);
}
}
class Solution {
public:
vector <int> boundary(Node *root)
{
vector<int> result;
if(!root) return result;
if(!isLeaf(root)) result.push_back(root->data);
addLeftBoundary(root,result);
addLeaves(root,result);
addRightBoundary(root,result);
return result;
}
};