-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBalanceABinarySearchTree.cpp
53 lines (47 loc) · 1.66 KB
/
BalanceABinarySearchTree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
/*
Given the root of a binary search tree, return a balanced binary search tree with the same node values. If there is more than one answer, return any of them.
A binary search tree is balanced if the depth of the two subtrees of every node never differs by more than 1.
Example 1:
Input: root = [1,null,2,null,3,null,4,null,null]
Output: [2,1,3,null,null,null,4]
Explanation: This is not the only correct answer, [3,1,4,null,2] is also correct.
Example 2:
Input: root = [2,1,3]
Output: [2,1,3]
*/
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
void inorderTraversal(TreeNode* root, vector<TreeNode*> &result){
if(!root) return;
inorderTraversal(root->left,result);
result.push_back(root);
inorderTraversal(root->right,result);
}
TreeNode* buildTree(int low, int high, vector<TreeNode*> &inorder){
if(low>high) return NULL;
int mid=(low+high)/2;
TreeNode *root=inorder[mid];
root->left=buildTree(low,mid-1,inorder);
root->right=buildTree(mid+1,high,inorder);
return root;
}
TreeNode* balanceBST(TreeNode* root) {
if(!root) return NULL;
vector<TreeNode*> inorder;
inorderTraversal(root,inorder);
int n=inorder.size();
root=buildTree(0,n-1,inorder);
return root;
}
};