forked from kubernetes-sigs/gateway-api-inference-extension
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscheduler.go
123 lines (110 loc) · 4.23 KB
/
scheduler.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
// Package scheduling implements request scheduling algorithms.
package scheduling
import (
"fmt"
"math/rand"
"google.golang.org/grpc/codes"
"google.golang.org/grpc/status"
"inference.networking.x-k8s.io/llm-instance-gateway/pkg/ext-proc/backend"
klog "k8s.io/klog/v2"
)
const (
// TODO(https://github.com/kubernetes-sigs/llm-instance-gateway/issues/16) Make this configurable.
kvCacheThreshold = 0.8
// TODO(https://github.com/kubernetes-sigs/llm-instance-gateway/issues/16) Make this configurable.
queueThresholdCritical = 5
// TODO(https://github.com/kubernetes-sigs/llm-instance-gateway/issues/16) Make this configurable.
// the threshold for queued requests to be considered low below which we can prioritize LoRA affinity.
// The value of 50 is arrived heuristicically based on experiments.
queueingThresholdLoRA = 50
)
var (
defaultFilter = &filter{
name: "critical request",
filter: toFilterFunc(criticalRequestPredicate),
nextOnSuccess: lowLatencyFilter,
nextOnFailure: sheddableRequestFilter,
}
// queueLoRAAndKVCacheFilter applied least queue -> low cost lora -> least KV Cache filter
queueLoRAAndKVCacheFilter = &filter{
name: "least queuing",
filter: leastQueuingFilterFunc,
nextOnSuccessOrFailure: &filter{
name: "low cost LoRA",
filter: toFilterFunc(lowLoRACostPredicate),
nextOnSuccessOrFailure: &filter{
name: "least KV cache percent",
filter: leastKVCacheFilterFunc,
},
},
}
// queueAndKVCacheFilter applies least queue followed by least KV Cache filter
queueAndKVCacheFilter = &filter{
name: "least queuing",
filter: leastQueuingFilterFunc,
nextOnSuccessOrFailure: &filter{
name: "least KV cache percent",
filter: leastKVCacheFilterFunc,
},
}
lowLatencyFilter = &filter{
name: "low queueing filter",
filter: toFilterFunc((lowQueueingPodPredicate)),
nextOnSuccess: &filter{
name: "affinity LoRA",
filter: toFilterFunc(loRAAffinityPredicate),
nextOnSuccess: queueAndKVCacheFilter,
nextOnFailure: &filter{
name: "can accept LoRA Adapter",
filter: toFilterFunc(canAcceptNewLoraPredicate),
nextOnSuccessOrFailure: queueAndKVCacheFilter,
},
},
nextOnFailure: queueLoRAAndKVCacheFilter,
}
sheddableRequestFilter = &filter{
// When there is at least one model server that's not queuing requests, and still has KV
// cache below a certain threshold, we consider this model server has capacity to handle
// a sheddable request without impacting critical requests.
name: "has capacity for sheddable requests",
filter: toFilterFunc(noQueueAndLessThanKVCacheThresholdPredicate(queueThresholdCritical, kvCacheThreshold)),
nextOnSuccess: queueLoRAAndKVCacheFilter,
// If all pods are queuing or running above the KVCache threshold, we drop the sheddable
// request to make room for critical requests.
nextOnFailure: &filter{
name: "drop request",
filter: func(req *LLMRequest, pods []*backend.PodMetrics) ([]*backend.PodMetrics, error) {
klog.Infof("Dropping request %v", req)
return []*backend.PodMetrics{}, status.Errorf(
codes.ResourceExhausted, "dropping request due to limited backend resources")
},
},
}
)
func NewScheduler(pmp PodMetricsProvider) *Scheduler {
return &Scheduler{
podMetricsProvider: pmp,
filter: defaultFilter,
}
}
type Scheduler struct {
podMetricsProvider PodMetricsProvider
filter Filter
}
// PodMetricsProvider is an interface to provide set of pods in the backend and information such as
// metrics.
type PodMetricsProvider interface {
AllPodMetrics() []*backend.PodMetrics
}
// Schedule finds the target pod based on metrics and the requested lora adapter.
func (s *Scheduler) Schedule(req *LLMRequest) (targetPod backend.Pod, err error) {
klog.V(3).Infof("request: %v; metrics: %+v", req, s.podMetricsProvider.AllPodMetrics())
pods, err := s.filter.Filter(req, s.podMetricsProvider.AllPodMetrics())
if err != nil || len(pods) == 0 {
return backend.Pod{}, fmt.Errorf(
"failed to apply filter, resulted %v pods, this should never happen: %w", len(pods), err)
}
klog.V(3).Infof("Going to randomly select a pod from the candidates: %+v", pods)
i := rand.Intn(len(pods))
return pods[i].Pod, nil
}