forked from kubernetes-sigs/gateway-api-inference-extension
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatastore_test.go
135 lines (130 loc) · 2.72 KB
/
datastore_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
package backend
import (
"testing"
v1 "k8s.io/apimachinery/pkg/apis/meta/v1"
"sigs.k8s.io/gateway-api-inference-extension/api/v1alpha1"
logutil "sigs.k8s.io/gateway-api-inference-extension/pkg/ext-proc/util/logging"
)
func TestHasSynced(t *testing.T) {
tests := []struct {
name string
inferencePool *v1alpha1.InferencePool
hasSynced bool
}{
{
name: "Ready when InferencePool exists in data store",
inferencePool: &v1alpha1.InferencePool{
ObjectMeta: v1.ObjectMeta{
Name: "test-pool",
Namespace: "default",
},
},
hasSynced: true,
},
{
name: "Not ready when InferencePool is nil in data store",
inferencePool: nil,
hasSynced: false,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
datastore := NewDatastore()
// Set the inference pool
if tt.inferencePool != nil {
datastore.PoolSet(tt.inferencePool)
}
// Check if the data store has been initialized
hasSynced := datastore.PoolHasSynced()
if hasSynced != tt.hasSynced {
t.Errorf("IsInitialized() = %v, want %v", hasSynced, tt.hasSynced)
}
})
}
}
func TestRandomWeightedDraw(t *testing.T) {
logger := logutil.NewTestLogger()
tests := []struct {
name string
model *v1alpha1.InferenceModel
want string
}{
{
name: "'random' distribution",
model: &v1alpha1.InferenceModel{
Spec: v1alpha1.InferenceModelSpec{
TargetModels: []v1alpha1.TargetModel{
{
Name: "canary",
Weight: pointer(50),
},
{
Name: "v1",
Weight: pointer(50),
},
},
},
},
want: "canary",
},
{
name: "'random' distribution",
model: &v1alpha1.InferenceModel{
Spec: v1alpha1.InferenceModelSpec{
TargetModels: []v1alpha1.TargetModel{
{
Name: "canary",
Weight: pointer(25),
},
{
Name: "v1.1",
Weight: pointer(55),
},
{
Name: "v1",
Weight: pointer(50),
},
},
},
},
want: "v1",
},
{
name: "'random' distribution",
model: &v1alpha1.InferenceModel{
Spec: v1alpha1.InferenceModelSpec{
TargetModels: []v1alpha1.TargetModel{
{
Name: "canary",
Weight: pointer(20),
},
{
Name: "v1.1",
Weight: pointer(20),
},
{
Name: "v1",
Weight: pointer(10),
},
},
},
},
want: "v1.1",
},
}
var seedVal int64 = 420
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
for range 10000 {
model := RandomWeightedDraw(logger, test.model, seedVal)
if model != test.want {
t.Errorf("Model returned!: %v", model)
break
}
}
})
}
}
func pointer(v int32) *int32 {
return &v
}