Skip to content

Latest commit

 

History

History
67 lines (55 loc) · 3.4 KB

CLAUDE.md

File metadata and controls

67 lines (55 loc) · 3.4 KB

AWS MCP Server Development Guide

Build & Test Commands

  • Install dependencies: pip install -e .
  • Install dev dependencies: pip install -e ".[dev]"
  • Run server: python -m aws_mcp_server
  • Run server with SSE transport: AWS_MCP_TRANSPORT=sse python -m aws_mcp_server
  • Run with MCP CLI: mcp run src/aws_mcp_server/server.py
  • Run tests: pytest
  • Run single test: pytest tests/path/to/test_file.py::test_function_name -v
  • Run linter: ruff check src/ tests/
  • Format code: ruff format src/ tests/

Technical Stack

  • Python version: Python 3.13+
  • Project config: pyproject.toml for configuration and dependency management
  • Environment: Use virtual environment in .venv for dependency isolation
  • Dependencies: Separate production and dev dependencies in pyproject.toml
  • Linting: ruff for style and error checking
  • Type checking: Use VS Code with Pylance for static type checking
  • Project layout: Organize code with src/ layout

Code Style Guidelines

  • Formatting: Black-compatible formatting via ruff format
  • Imports: Sort imports with ruff (stdlib, third-party, local)
  • Type hints: Use native Python type hints (e.g., list[str] not List[str])
  • Documentation: Google-style docstrings for all modules, classes, functions
  • Naming: snake_case for variables/functions, PascalCase for classes
  • Function length: Keep functions short (< 30 lines) and single-purpose
  • PEP 8: Follow PEP 8 style guide (enforced via ruff)

Python Best Practices

  • File handling: Prefer pathlib.Path over os.path
  • Debugging: Use logging module instead of print
  • Error handling: Use specific exceptions with context messages and proper logging
  • Data structures: Use list/dict comprehensions for concise, readable code
  • Function arguments: Avoid mutable default arguments
  • Data containers: Leverage dataclasses to reduce boilerplate
  • Configuration: Use environment variables (via python-dotenv) for configuration
  • AWS CLI: Validate all commands before execution (must start with "aws")
  • Security: Never store/log AWS credentials, set command timeouts

Development Patterns & Best Practices

  • Favor simplicity: Choose the simplest solution that meets requirements
  • DRY principle: Avoid code duplication; reuse existing functionality
  • Configuration management: Use environment variables for different environments
  • Focused changes: Only implement explicitly requested or fully understood changes
  • Preserve patterns: Follow existing code patterns when fixing bugs
  • File size: Keep files under 300 lines; refactor when exceeding this limit
  • Test coverage: Write comprehensive unit and integration tests with pytest; include fixtures
  • Modular design: Create reusable, modular components
  • Logging: Implement appropriate logging levels (debug, info, error)
  • Error handling: Implement robust error handling for production reliability
  • Security best practices: Follow input validation and data protection practices
  • Performance: Optimize critical code sections when necessary
  • Dependency management: Add libraries only when essential

Development Workflow

  • Version control: Commit frequently with clear messages
  • Impact assessment: Evaluate how changes affect other codebase areas
  • Documentation: Keep documentation up-to-date for complex logic and features