- Install dependencies:
pip install -e .
- Install dev dependencies:
pip install -e ".[dev]"
- Run server:
python -m aws_mcp_server
- Run server with SSE transport:
AWS_MCP_TRANSPORT=sse python -m aws_mcp_server
- Run with MCP CLI:
mcp run src/aws_mcp_server/server.py
- Run tests:
pytest
- Run single test:
pytest tests/path/to/test_file.py::test_function_name -v
- Run linter:
ruff check src/ tests/
- Format code:
ruff format src/ tests/
- Python version: Python 3.13+
- Project config:
pyproject.toml
for configuration and dependency management - Environment: Use virtual environment in
.venv
for dependency isolation - Dependencies: Separate production and dev dependencies in
pyproject.toml
- Linting:
ruff
for style and error checking - Type checking: Use VS Code with Pylance for static type checking
- Project layout: Organize code with
src/
layout
- Formatting: Black-compatible formatting via
ruff format
- Imports: Sort imports with
ruff
(stdlib, third-party, local) - Type hints: Use native Python type hints (e.g.,
list[str]
notList[str]
) - Documentation: Google-style docstrings for all modules, classes, functions
- Naming: snake_case for variables/functions, PascalCase for classes
- Function length: Keep functions short (< 30 lines) and single-purpose
- PEP 8: Follow PEP 8 style guide (enforced via
ruff
)
- File handling: Prefer
pathlib.Path
overos.path
- Debugging: Use
logging
module instead ofprint
- Error handling: Use specific exceptions with context messages and proper logging
- Data structures: Use list/dict comprehensions for concise, readable code
- Function arguments: Avoid mutable default arguments
- Data containers: Leverage
dataclasses
to reduce boilerplate - Configuration: Use environment variables (via
python-dotenv
) for configuration - AWS CLI: Validate all commands before execution (must start with "aws")
- Security: Never store/log AWS credentials, set command timeouts
- Favor simplicity: Choose the simplest solution that meets requirements
- DRY principle: Avoid code duplication; reuse existing functionality
- Configuration management: Use environment variables for different environments
- Focused changes: Only implement explicitly requested or fully understood changes
- Preserve patterns: Follow existing code patterns when fixing bugs
- File size: Keep files under 300 lines; refactor when exceeding this limit
- Test coverage: Write comprehensive unit and integration tests with
pytest
; include fixtures - Modular design: Create reusable, modular components
- Logging: Implement appropriate logging levels (debug, info, error)
- Error handling: Implement robust error handling for production reliability
- Security best practices: Follow input validation and data protection practices
- Performance: Optimize critical code sections when necessary
- Dependency management: Add libraries only when essential
- Version control: Commit frequently with clear messages
- Impact assessment: Evaluate how changes affect other codebase areas
- Documentation: Keep documentation up-to-date for complex logic and features