-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathparaformer.cpp
680 lines (596 loc) · 24.4 KB
/
paraformer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
/**
* Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
* MIT License (https://opensource.org/licenses/MIT)
*/
#include "precomp.h"
#include "paraformer.h"
#include "encode_converter.h"
#include <cstddef>
using namespace std;
namespace funasr {
Paraformer::Paraformer()
:use_hotword(false),
env_(ORT_LOGGING_LEVEL_ERROR, "paraformer"),session_options_{},
hw_env_(ORT_LOGGING_LEVEL_ERROR, "paraformer_hw"),hw_session_options{} {
}
// offline
void Paraformer::InitAsr(const std::string &am_model, const std::string &am_cmvn, const std::string &am_config, const std::string &token_file, int thread_num){
LoadConfigFromYaml(am_config.c_str());
// knf options
fbank_opts_.frame_opts.dither = 0;
fbank_opts_.mel_opts.num_bins = n_mels;
fbank_opts_.frame_opts.samp_freq = asr_sample_rate;
fbank_opts_.frame_opts.window_type = window_type;
fbank_opts_.frame_opts.frame_shift_ms = frame_shift;
fbank_opts_.frame_opts.frame_length_ms = frame_length;
fbank_opts_.energy_floor = 0;
fbank_opts_.mel_opts.debug_mel = false;
// fbank_ = std::make_unique<knf::OnlineFbank>(fbank_opts);
// session_options_.SetInterOpNumThreads(1);
session_options_.SetIntraOpNumThreads(thread_num);
session_options_.SetGraphOptimizationLevel(ORT_ENABLE_ALL);
// DisableCpuMemArena can improve performance
session_options_.DisableCpuMemArena();
try {
m_session_ = std::make_unique<Ort::Session>(env_, ORTSTRING(am_model).c_str(), session_options_);
LOG(INFO) << "Successfully load model from " << am_model;
} catch (std::exception const &e) {
LOG(ERROR) << "Error when load am onnx model: " << e.what();
exit(-1);
}
GetInputNames(m_session_.get(), m_strInputNames, m_szInputNames);
GetOutputNames(m_session_.get(), m_strOutputNames, m_szOutputNames);
vocab = new Vocab(token_file.c_str());
phone_set_ = new PhoneSet(token_file.c_str());
LoadCmvn(am_cmvn.c_str());
}
// online
void Paraformer::InitAsr(const std::string &en_model, const std::string &de_model, const std::string &am_cmvn, const std::string &am_config, const std::string &token_file, int thread_num){
LoadOnlineConfigFromYaml(am_config.c_str());
// knf options
fbank_opts_.frame_opts.dither = 0;
fbank_opts_.mel_opts.num_bins = n_mels;
fbank_opts_.frame_opts.samp_freq = asr_sample_rate;
fbank_opts_.frame_opts.window_type = window_type;
fbank_opts_.frame_opts.frame_shift_ms = frame_shift;
fbank_opts_.frame_opts.frame_length_ms = frame_length;
fbank_opts_.energy_floor = 0;
fbank_opts_.mel_opts.debug_mel = false;
// session_options_.SetInterOpNumThreads(1);
session_options_.SetIntraOpNumThreads(thread_num);
session_options_.SetGraphOptimizationLevel(ORT_ENABLE_ALL);
// DisableCpuMemArena can improve performance
session_options_.DisableCpuMemArena();
try {
encoder_session_ = std::make_unique<Ort::Session>(env_, ORTSTRING(en_model).c_str(), session_options_);
LOG(INFO) << "Successfully load model from " << en_model;
} catch (std::exception const &e) {
LOG(ERROR) << "Error when load am encoder model: " << e.what();
exit(-1);
}
try {
decoder_session_ = std::make_unique<Ort::Session>(env_, ORTSTRING(de_model).c_str(), session_options_);
LOG(INFO) << "Successfully load model from " << de_model;
} catch (std::exception const &e) {
LOG(ERROR) << "Error when load am decoder model: " << e.what();
exit(-1);
}
// encoder
string strName;
GetInputName(encoder_session_.get(), strName);
en_strInputNames.push_back(strName.c_str());
GetInputName(encoder_session_.get(), strName,1);
en_strInputNames.push_back(strName);
GetOutputName(encoder_session_.get(), strName);
en_strOutputNames.push_back(strName);
GetOutputName(encoder_session_.get(), strName,1);
en_strOutputNames.push_back(strName);
GetOutputName(encoder_session_.get(), strName,2);
en_strOutputNames.push_back(strName);
for (auto& item : en_strInputNames)
en_szInputNames_.push_back(item.c_str());
for (auto& item : en_strOutputNames)
en_szOutputNames_.push_back(item.c_str());
// decoder
int de_input_len = 4 + fsmn_layers;
int de_out_len = 2 + fsmn_layers;
for(int i=0;i<de_input_len; i++){
GetInputName(decoder_session_.get(), strName, i);
de_strInputNames.push_back(strName.c_str());
}
for(int i=0;i<de_out_len; i++){
GetOutputName(decoder_session_.get(), strName,i);
de_strOutputNames.push_back(strName);
}
for (auto& item : de_strInputNames)
de_szInputNames_.push_back(item.c_str());
for (auto& item : de_strOutputNames)
de_szOutputNames_.push_back(item.c_str());
vocab = new Vocab(token_file.c_str());
phone_set_ = new PhoneSet(token_file.c_str());
LoadCmvn(am_cmvn.c_str());
}
// 2pass
void Paraformer::InitAsr(const std::string &am_model, const std::string &en_model, const std::string &de_model,
const std::string &am_cmvn, const std::string &am_config, const std::string &token_file, const std::string &online_token_file, int thread_num){
// online
InitAsr(en_model, de_model, am_cmvn, am_config, online_token_file, thread_num);
// offline
try {
m_session_ = std::make_unique<Ort::Session>(env_, ORTSTRING(am_model).c_str(), session_options_);
LOG(INFO) << "Successfully load model from " << am_model;
} catch (std::exception const &e) {
LOG(ERROR) << "Error when load am onnx model: " << e.what();
exit(-1);
}
GetInputNames(m_session_.get(), m_strInputNames, m_szInputNames);
GetOutputNames(m_session_.get(), m_strOutputNames, m_szOutputNames);
}
void Paraformer::InitLm(const std::string &lm_file,
const std::string &lm_cfg_file,
const std::string &lex_file) {
try {
lm_ = std::shared_ptr<fst::Fst<fst::StdArc>>(
fst::Fst<fst::StdArc>::Read(lm_file));
if (lm_){
lm_vocab = new Vocab(lm_cfg_file.c_str(), lex_file.c_str());
LOG(INFO) << "Successfully load lm file " << lm_file;
}else{
LOG(ERROR) << "Failed to load lm file " << lm_file;
}
} catch (std::exception const &e) {
LOG(ERROR) << "Error when load lm file: " << e.what();
exit(0);
}
}
void Paraformer::LoadConfigFromYaml(const char* filename){
YAML::Node config;
try{
config = YAML::LoadFile(filename);
}catch(exception const &e){
LOG(ERROR) << "Error loading file, yaml file error or not exist.";
exit(-1);
}
try{
YAML::Node frontend_conf = config["frontend_conf"];
this->asr_sample_rate = frontend_conf["fs"].as<int>();
YAML::Node lang_conf = config["lang"];
if (lang_conf.IsDefined()){
language = lang_conf.as<string>();
}
}catch(exception const &e){
LOG(ERROR) << "Error when load argument from vad config YAML.";
exit(-1);
}
}
void Paraformer::LoadOnlineConfigFromYaml(const char* filename){
YAML::Node config;
try{
config = YAML::LoadFile(filename);
}catch(exception const &e){
LOG(ERROR) << "Error loading file, yaml file error or not exist.";
exit(-1);
}
try{
YAML::Node frontend_conf = config["frontend_conf"];
YAML::Node encoder_conf = config["encoder_conf"];
YAML::Node decoder_conf = config["decoder_conf"];
YAML::Node predictor_conf = config["predictor_conf"];
this->window_type = frontend_conf["window"].as<string>();
this->n_mels = frontend_conf["n_mels"].as<int>();
this->frame_length = frontend_conf["frame_length"].as<int>();
this->frame_shift = frontend_conf["frame_shift"].as<int>();
this->lfr_m = frontend_conf["lfr_m"].as<int>();
this->lfr_n = frontend_conf["lfr_n"].as<int>();
this->encoder_size = encoder_conf["output_size"].as<int>();
this->fsmn_dims = encoder_conf["output_size"].as<int>();
this->fsmn_layers = decoder_conf["num_blocks"].as<int>();
this->fsmn_lorder = decoder_conf["kernel_size"].as<int>()-1;
this->cif_threshold = predictor_conf["threshold"].as<double>();
this->tail_alphas = predictor_conf["tail_threshold"].as<double>();
this->asr_sample_rate = frontend_conf["fs"].as<int>();
}catch(exception const &e){
LOG(ERROR) << "Error when load argument from vad config YAML.";
exit(-1);
}
}
void Paraformer::InitHwCompiler(const std::string &hw_model, int thread_num) {
hw_session_options.SetIntraOpNumThreads(thread_num);
hw_session_options.SetGraphOptimizationLevel(ORT_ENABLE_ALL);
// DisableCpuMemArena can improve performance
hw_session_options.DisableCpuMemArena();
try {
hw_m_session = std::make_unique<Ort::Session>(hw_env_, ORTSTRING(hw_model).c_str(), hw_session_options);
LOG(INFO) << "Successfully load model from " << hw_model;
} catch (std::exception const &e) {
LOG(ERROR) << "Error when load hw compiler onnx model: " << e.what();
exit(-1);
}
string strName;
GetInputName(hw_m_session.get(), strName);
hw_m_strInputNames.push_back(strName.c_str());
//GetInputName(hw_m_session.get(), strName,1);
//hw_m_strInputNames.push_back(strName);
GetOutputName(hw_m_session.get(), strName);
hw_m_strOutputNames.push_back(strName);
for (auto& item : hw_m_strInputNames)
hw_m_szInputNames.push_back(item.c_str());
for (auto& item : hw_m_strOutputNames)
hw_m_szOutputNames.push_back(item.c_str());
// if init hotword compiler is called, this is a hotword paraformer model
use_hotword = true;
}
void Paraformer::InitSegDict(const std::string &seg_dict_model) {
seg_dict = new SegDict(seg_dict_model.c_str());
}
Paraformer::~Paraformer()
{
if(vocab){
delete vocab;
}
if(lm_vocab){
delete lm_vocab;
}
if(seg_dict){
delete seg_dict;
}
if(phone_set_){
delete phone_set_;
}
}
void Paraformer::StartUtterance()
{
}
void Paraformer::EndUtterance()
{
}
void Paraformer::Reset()
{
}
void Paraformer::FbankKaldi(float sample_rate, const float* waves, int len, std::vector<std::vector<float>> &asr_feats) {
knf::OnlineFbank fbank_(fbank_opts_);
std::vector<float> buf(len);
for (int32_t i = 0; i != len; ++i) {
buf[i] = waves[i] * 32768;
}
fbank_.AcceptWaveform(sample_rate, buf.data(), buf.size());
int32_t frames = fbank_.NumFramesReady();
for (int32_t i = 0; i != frames; ++i) {
const float *frame = fbank_.GetFrame(i);
std::vector<float> frame_vector(frame, frame + fbank_opts_.mel_opts.num_bins);
asr_feats.emplace_back(frame_vector);
}
}
void Paraformer::LoadCmvn(const char *filename)
{
ifstream cmvn_stream(filename);
if (!cmvn_stream.is_open()) {
LOG(ERROR) << "Failed to open file: " << filename;
exit(-1);
}
string line;
while (getline(cmvn_stream, line)) {
istringstream iss(line);
vector<string> line_item{istream_iterator<string>{iss}, istream_iterator<string>{}};
if (line_item[0] == "<AddShift>") {
getline(cmvn_stream, line);
istringstream means_lines_stream(line);
vector<string> means_lines{istream_iterator<string>{means_lines_stream}, istream_iterator<string>{}};
if (means_lines[0] == "<LearnRateCoef>") {
for (int j = 3; j < means_lines.size() - 1; j++) {
means_list_.push_back(stof(means_lines[j]));
}
continue;
}
}
else if (line_item[0] == "<Rescale>") {
getline(cmvn_stream, line);
istringstream vars_lines_stream(line);
vector<string> vars_lines{istream_iterator<string>{vars_lines_stream}, istream_iterator<string>{}};
if (vars_lines[0] == "<LearnRateCoef>") {
for (int j = 3; j < vars_lines.size() - 1; j++) {
vars_list_.push_back(stof(vars_lines[j])*scale);
}
continue;
}
}
}
}
string Paraformer::GreedySearch(float * in, int n_len, int64_t token_nums, bool is_stamp, std::vector<float> us_alphas, std::vector<float> us_cif_peak)
{
vector<int> hyps;
int Tmax = n_len;
for (int i = 0; i < Tmax; i++) {
int max_idx;
float max_val;
FindMax(in + i * token_nums, token_nums, max_val, max_idx);
hyps.push_back(max_idx);
}
if(!is_stamp){
return vocab->Vector2StringV2(hyps, language);
}else{
std::vector<string> char_list;
std::vector<std::vector<float>> timestamp_list;
std::string res_str;
vocab->Vector2String(hyps, char_list);
std::vector<string> raw_char(char_list);
TimestampOnnx(us_alphas, us_cif_peak, char_list, res_str, timestamp_list);
return PostProcess(raw_char, timestamp_list);
}
}
string Paraformer::BeamSearch(WfstDecoder* &wfst_decoder, float *in, int len, int64_t token_nums)
{
return wfst_decoder->Search(in, len, token_nums);
}
string Paraformer::FinalizeDecode(WfstDecoder* &wfst_decoder,
bool is_stamp, std::vector<float> us_alphas, std::vector<float> us_cif_peak)
{
return wfst_decoder->FinalizeDecode(is_stamp, us_alphas, us_cif_peak);
}
void Paraformer::LfrCmvn(std::vector<std::vector<float>> &asr_feats) {
std::vector<std::vector<float>> out_feats;
int T = asr_feats.size();
int T_lrf = ceil(1.0 * T / lfr_n);
// Pad frames at start(copy first frame)
for (int i = 0; i < (lfr_m - 1) / 2; i++) {
asr_feats.insert(asr_feats.begin(), asr_feats[0]);
}
// Merge lfr_m frames as one,lfr_n frames per window
T = T + (lfr_m - 1) / 2;
std::vector<float> p;
for (int i = 0; i < T_lrf; i++) {
if (lfr_m <= T - i * lfr_n) {
for (int j = 0; j < lfr_m; j++) {
p.insert(p.end(), asr_feats[i * lfr_n + j].begin(), asr_feats[i * lfr_n + j].end());
}
out_feats.emplace_back(p);
p.clear();
} else {
// Fill to lfr_m frames at last window if less than lfr_m frames (copy last frame)
int num_padding = lfr_m - (T - i * lfr_n);
for (int j = 0; j < (asr_feats.size() - i * lfr_n); j++) {
p.insert(p.end(), asr_feats[i * lfr_n + j].begin(), asr_feats[i * lfr_n + j].end());
}
for (int j = 0; j < num_padding; j++) {
p.insert(p.end(), asr_feats[asr_feats.size() - 1].begin(), asr_feats[asr_feats.size() - 1].end());
}
out_feats.emplace_back(p);
p.clear();
}
}
// Apply cmvn
for (auto &out_feat: out_feats) {
for (int j = 0; j < means_list_.size(); j++) {
out_feat[j] = (out_feat[j] + means_list_[j]) * vars_list_[j];
}
}
asr_feats = out_feats;
}
std::vector<std::string> Paraformer::Forward(float** din, int* len, bool input_finished, const std::vector<std::vector<float>> &hw_emb, void* decoder_handle, int batch_in)
{
std::vector<std::string> results;
string result="";
WfstDecoder* wfst_decoder = (WfstDecoder*)decoder_handle;
int32_t in_feat_dim = fbank_opts_.mel_opts.num_bins;
if(batch_in != 1){
results.push_back(result);
return results;
}
std::vector<std::vector<float>> asr_feats;
FbankKaldi(asr_sample_rate, din[0], len[0], asr_feats);
if(asr_feats.size() == 0){
results.push_back(result);
return results;
}
LfrCmvn(asr_feats);
int32_t feat_dim = lfr_m*in_feat_dim;
int32_t num_frames = asr_feats.size();
std::vector<float> wav_feats;
for (const auto &frame_feat: asr_feats) {
wav_feats.insert(wav_feats.end(), frame_feat.begin(), frame_feat.end());
}
#ifdef _WIN_X86
Ort::MemoryInfo m_memoryInfo = Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU);
#else
Ort::MemoryInfo m_memoryInfo = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);
#endif
const int64_t input_shape_[3] = {1, num_frames, feat_dim};
Ort::Value onnx_feats = Ort::Value::CreateTensor<float>(m_memoryInfo,
wav_feats.data(),
wav_feats.size(),
input_shape_,
3);
const int64_t paraformer_length_shape[1] = {1};
std::vector<int32_t> paraformer_length;
paraformer_length.emplace_back(num_frames);
Ort::Value onnx_feats_len = Ort::Value::CreateTensor<int32_t>(
m_memoryInfo, paraformer_length.data(), paraformer_length.size(), paraformer_length_shape, 1);
std::vector<Ort::Value> input_onnx;
input_onnx.emplace_back(std::move(onnx_feats));
input_onnx.emplace_back(std::move(onnx_feats_len));
std::vector<float> embedding;
try{
if (use_hotword) {
if(hw_emb.size()<=0){
LOG(ERROR) << "hw_emb is null";
results.push_back(result);
return results;
}
//PrintMat(hw_emb, "input_clas_emb");
const int64_t hotword_shape[3] = {1, static_cast<int64_t>(hw_emb.size()), static_cast<int64_t>(hw_emb[0].size())};
embedding.reserve(hw_emb.size() * hw_emb[0].size());
for (auto item : hw_emb) {
embedding.insert(embedding.end(), item.begin(), item.end());
}
//LOG(INFO) << "hotword shape " << hotword_shape[0] << " " << hotword_shape[1] << " " << hotword_shape[2] << " size " << embedding.size();
Ort::Value onnx_hw_emb = Ort::Value::CreateTensor<float>(
m_memoryInfo, embedding.data(), embedding.size(), hotword_shape, 3);
input_onnx.emplace_back(std::move(onnx_hw_emb));
}
}catch (std::exception const &e)
{
LOG(ERROR)<<e.what();
results.push_back(result);
return results;
}
try {
auto outputTensor = m_session_->Run(Ort::RunOptions{nullptr}, m_szInputNames.data(), input_onnx.data(), input_onnx.size(), m_szOutputNames.data(), m_szOutputNames.size());
std::vector<int64_t> outputShape = outputTensor[0].GetTensorTypeAndShapeInfo().GetShape();
//LOG(INFO) << "paraformer out shape " << outputShape[0] << " " << outputShape[1] << " " << outputShape[2];
int64_t outputCount = std::accumulate(outputShape.begin(), outputShape.end(), 1, std::multiplies<int64_t>());
float* floatData = outputTensor[0].GetTensorMutableData<float>();
auto encoder_out_lens = outputTensor[1].GetTensorMutableData<int64_t>();
// timestamp
if(outputTensor.size() == 4){
std::vector<int64_t> us_alphas_shape = outputTensor[2].GetTensorTypeAndShapeInfo().GetShape();
float* us_alphas_data = outputTensor[2].GetTensorMutableData<float>();
std::vector<float> us_alphas(us_alphas_shape[1]);
for (int i = 0; i < us_alphas_shape[1]; i++) {
us_alphas[i] = us_alphas_data[i];
}
std::vector<int64_t> us_peaks_shape = outputTensor[3].GetTensorTypeAndShapeInfo().GetShape();
float* us_peaks_data = outputTensor[3].GetTensorMutableData<float>();
std::vector<float> us_peaks(us_peaks_shape[1]);
for (int i = 0; i < us_peaks_shape[1]; i++) {
us_peaks[i] = us_peaks_data[i];
}
if (lm_ == nullptr) {
result = GreedySearch(floatData, *encoder_out_lens, outputShape[2], true, us_alphas, us_peaks);
} else {
result = BeamSearch(wfst_decoder, floatData, *encoder_out_lens, outputShape[2]);
if (input_finished) {
result = FinalizeDecode(wfst_decoder, true, us_alphas, us_peaks);
}
}
}else{
if (lm_ == nullptr) {
result = GreedySearch(floatData, *encoder_out_lens, outputShape[2]);
} else {
result = BeamSearch(wfst_decoder, floatData, *encoder_out_lens, outputShape[2]);
if (input_finished) {
result = FinalizeDecode(wfst_decoder);
}
}
}
}
catch (std::exception const &e)
{
LOG(ERROR)<<e.what();
}
results.push_back(result);
return results;
}
std::vector<std::vector<float>> Paraformer::CompileHotwordEmbedding(std::string &hotwords) {
int embedding_dim = encoder_size;
std::vector<std::vector<float>> hw_emb;
if (!use_hotword) {
std::vector<float> vec(embedding_dim, 0);
hw_emb.push_back(vec);
return hw_emb;
}
int max_hotword_len = 10;
std::vector<int32_t> hotword_matrix;
std::vector<int32_t> lengths;
int hotword_size = 1;
int real_hw_size = 0;
if (!hotwords.empty()) {
std::vector<std::string> hotword_array = split(hotwords, ' ');
hotword_size = hotword_array.size() + 1;
hotword_matrix.reserve(hotword_size * max_hotword_len);
for (auto hotword : hotword_array) {
std::vector<std::string> chars;
if (EncodeConverter::IsAllChineseCharactor((const U8CHAR_T*)hotword.c_str(), hotword.size())) {
KeepChineseCharacterAndSplit(hotword, chars);
} else {
// for english
std::vector<std::string> words = split(hotword, ' ');
for (auto word : words) {
std::vector<string> tokens = seg_dict->GetTokensByWord(word);
chars.insert(chars.end(), tokens.begin(), tokens.end());
}
}
if(chars.size()==0){
continue;
}
std::vector<int32_t> hw_vector(max_hotword_len, 0);
int vector_len = std::min(max_hotword_len, (int)chars.size());
int chs_oov = false;
for (int i=0; i<vector_len; i++) {
hw_vector[i] = phone_set_->String2Id(chars[i]);
if(hw_vector[i] == -1){
chs_oov = true;
break;
}
}
if(chs_oov){
LOG(INFO) << "OOV: " << hotword;
continue;
}
LOG(INFO) << hotword;
lengths.push_back(vector_len);
real_hw_size += 1;
hotword_matrix.insert(hotword_matrix.end(), hw_vector.begin(), hw_vector.end());
}
hotword_size = real_hw_size + 1;
}
std::vector<int32_t> blank_vec(max_hotword_len, 0);
blank_vec[0] = 1;
hotword_matrix.insert(hotword_matrix.end(), blank_vec.begin(), blank_vec.end());
lengths.push_back(1);
#ifdef _WIN_X86
Ort::MemoryInfo m_memoryInfo = Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU);
#else
Ort::MemoryInfo m_memoryInfo = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);
#endif
const int64_t input_shape_[2] = {hotword_size, max_hotword_len};
Ort::Value onnx_hotword = Ort::Value::CreateTensor<int32_t>(m_memoryInfo,
(int32_t*)hotword_matrix.data(),
hotword_size * max_hotword_len,
input_shape_,
2);
LOG(INFO) << "clas shape " << hotword_size << " " << max_hotword_len << std::endl;
std::vector<Ort::Value> input_onnx;
input_onnx.emplace_back(std::move(onnx_hotword));
std::vector<std::vector<float>> result;
try {
auto outputTensor = hw_m_session->Run(Ort::RunOptions{nullptr}, hw_m_szInputNames.data(), input_onnx.data(), input_onnx.size(), hw_m_szOutputNames.data(), hw_m_szOutputNames.size());
std::vector<int64_t> outputShape = outputTensor[0].GetTensorTypeAndShapeInfo().GetShape();
int64_t outputCount = std::accumulate(outputShape.begin(), outputShape.end(), 1, std::multiplies<int64_t>());
float* floatData = outputTensor[0].GetTensorMutableData<float>(); // shape [max_hotword_len, hotword_size, dim]
// get embedding by real hotword length
assert(outputShape[0] == max_hotword_len);
assert(outputShape[1] == hotword_size);
embedding_dim = outputShape[2];
for (int j = 0; j < hotword_size; j++)
{
int start_pos = hotword_size * (lengths[j] - 1) * embedding_dim + j * embedding_dim;
std::vector<float> embedding;
embedding.insert(embedding.begin(), floatData + start_pos, floatData + start_pos + embedding_dim);
result.push_back(embedding);
}
}
catch (std::exception const &e)
{
LOG(ERROR)<<e.what();
}
//PrintMat(result, "clas_embedding_output");
return result;
}
Vocab* Paraformer::GetVocab()
{
return vocab;
}
Vocab* Paraformer::GetLmVocab()
{
return lm_vocab;
}
PhoneSet* Paraformer::GetPhoneSet()
{
return phone_set_;
}
string Paraformer::Rescoring()
{
LOG(ERROR)<<"Not Imp!!!!!!";
return "";
}
} // namespace funasr