-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy path53.maximum-subarray.java
48 lines (45 loc) · 1.01 KB
/
53.maximum-subarray.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
/*
* @lc app=leetcode id=53 lang=java
*
* [53] Maximum Subarray
*
* https://leetcode.com/problems/maximum-subarray/description/
*
* algorithms
* Easy (42.83%)
* Total Accepted: 486.1K
* Total Submissions: 1.1M
* Testcase Example: '[-2,1,-3,4,-1,2,1,-5,4]'
*
* Given an integer array nums, find the contiguous subarray (containing at
* least one number) which has the largest sum and return its sum.
*
* Example:
*
*
* Input: [-2,1,-3,4,-1,2,1,-5,4],
* Output: 6
* Explanation: [4,-1,2,1] has the largest sum = 6.
*
*
* Follow up:
*
* If you have figured out the O(n) solution, try coding another solution using
* the divide and conquer approach, which is more subtle.
*
*/
class Solution {
public int maxSubArray(int[] nums) {
int n = nums.length;
int[] dp = new int[n];
dp[0] = nums[0];
int max = dp[0];
for (int i = 1; i < n; i++) {
dp[i] = nums[i] + ((dp[i-1] > 0) ? dp[i-1] : 0);
if (dp[i] > max) {
max = dp[i];
}
}
return max;
}
}