-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy path72.edit-distance.java
84 lines (78 loc) · 1.87 KB
/
72.edit-distance.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
/*
* @lc app=leetcode id=72 lang=java
*
* [72] Edit Distance
*
* https://leetcode.com/problems/edit-distance/description/
*
* algorithms
* Hard (36.47%)
* Total Accepted: 167K
* Total Submissions: 449.4K
* Testcase Example: '"horse"\n"ros"'
*
* Given two words word1 and word2, find the minimum number of operations
* required to convert word1 to word2.
*
* You have the following 3 operations permitted on a word:
*
*
* Insert a character
* Delete a character
* Replace a character
*
*
* Example 1:
*
*
* Input: word1 = "horse", word2 = "ros"
* Output: 3
* Explanation:
* horse -> rorse (replace 'h' with 'r')
* rorse -> rose (remove 'r')
* rose -> ros (remove 'e')
*
*
* Example 2:
*
*
* Input: word1 = "intention", word2 = "execution"
* Output: 5
* Explanation:
* intention -> inention (remove 't')
* inention -> enention (replace 'i' with 'e')
* enention -> exention (replace 'n' with 'x')
* exention -> exection (replace 'n' with 'c')
* exection -> execution (insert 'u')
*
*
*/
class Solution {
public int minDistance(String word1, String word2) {
int m = word1.length();
int n = word2.length();
if (m == 0) return n;
if (n == 0) return m;
if (m == 1) return n - (word2.startsWith(word1) ? 1 : 0);
if (n == 1) return m - (word1.startsWith(word2) ? 1 : 0);
if (word1.startsWith(word2)) return m - n;
if (word2.startsWith(word1)) return n - m;
int[][] dp = new int[m+1][n+1];
for (int i = 1; i <= m; i++) {
dp[i][0] = i;
}
for (int i = 1; i <= n; i++) {
dp[0][i] = i;
}
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
if (word1.charAt(i-1) == word2.charAt(j-1)) {
dp[i][j] = dp[i-1][j-1];
} else {
dp[i][j] = 1 + Math.min(dp[i-1][j], Math.min(dp[i][j-1], dp[i-1][j-1]));
}
}
}
return dp[m][n];
}
}