-
Notifications
You must be signed in to change notification settings - Fork 272
[Feature] Add Support for Distributed Write #1751
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Comments
Hi @Fokko Based on the source code writing to manifest / Avro can be achieved like this manifest_path = f"temp-manifest-{uuid.uuid4()}.avro"
output_file = io.new_output(manifest_path)
# Write all datafiles to the manifest
with write_manifest(format_version, spec, schema, output_file, snapshot_id) as writer:
for datafile in datafiles:
writer.add(ManifestEntry(data_file=datafile)) I don't see how can we get back the |
@andormarkus Sure thing, does the following help: from io import BytesIO
from pyiceberg.avro.decoder_fast import CythonBinaryDecoder
from pyiceberg.avro.encoder import BinaryEncoder
from pyiceberg.avro.resolver import construct_writer, resolve_reader
from pyiceberg.manifest import DATA_FILE_TYPE, DEFAULT_READ_VERSION, DataFile, DataFileContent, FileFormat
from pyiceberg.typedef import Record
def test_serialize():
data_file = DataFile(
content=DataFileContent.DATA,
file_path="s3://some-path/some-file.parquet",
file_format=FileFormat.PARQUET,
partition=Record(),
record_count=131327,
file_size_in_bytes=220669226,
column_sizes={1: 220661854},
value_counts={1: 131327},
null_value_counts={1: 0},
nan_value_counts={},
lower_bounds={1: b"aaaaaaaaaaaaaaaa"},
upper_bounds={1: b"zzzzzzzzzzzzzzzz"},
key_metadata=b"\xde\xad\xbe\xef",
split_offsets=[4, 133697593],
equality_ids=[],
sort_order_id=4,
)
# Encode
output = BytesIO()
encoder = BinaryEncoder(output)
schema = DATA_FILE_TYPE[DEFAULT_READ_VERSION]
construct_writer(file_schema=schema).write(encoder, data_file)
# Decode
decoder = CythonBinaryDecoder(output.getvalue())
result = resolve_reader(
schema,
schema,
read_types={-1: DataFile},
).read(decoder)
assert result.file_path == "s3://some-path/some-file.parquet" |
Hi @Fokko Thank you soo much for the code snippet. I have extended the test and run into the following problem with partitioned tables (non partitioned tables are passing the test):
I could not figure it out in which steps the partition info is lost. Source code: import os
import uuid
from typing import Any, Dict
import pytest
import tempfile
import pyarrow as pa
from io import BytesIO
from pyiceberg.io.pyarrow import _dataframe_to_data_files
from pyiceberg.schema import Schema
from pyiceberg.types import NestedField, StringType, DoubleType, LongType, BinaryType
from pyiceberg.partitioning import PartitionSpec, PartitionField
from pyiceberg.transforms import IdentityTransform
from pyiceberg.avro.decoder_fast import CythonBinaryDecoder
from pyiceberg.avro.encoder import BinaryEncoder
from pyiceberg.avro.resolver import construct_writer, resolve_reader
from pyiceberg.manifest import DATA_FILE_TYPE, DEFAULT_READ_VERSION, DataFile
from pyiceberg.typedef import Record
from pyiceberg.catalog import load_catalog
def get_schema():
# Define schema with partitioned fields
return Schema(
NestedField(1, "city", StringType(), required=False),
NestedField(2, "lat", DoubleType(), required=False),
NestedField(3, "long", DoubleType(), required=False),
NestedField(4, "portal_id", LongType(), required=False),
NestedField(5, "timestamp_day", LongType(), required=False),
NestedField(6, "binary_data", BinaryType(), required=False),
)
def get_partition_spec():
# Define partition spec (portal_id, timestamp_day)
return PartitionSpec(
spec_id=0,
fields=[
PartitionField(
source_id=4,
field_id=1000,
transform=IdentityTransform(),
name="portal_id"
),
PartitionField(
source_id=5,
field_id=1001,
transform=IdentityTransform(),
name="timestamp_day"
),
]
)
def get_empty_partition_spec():
# Define empty partition spec for non-partitioned tests
return PartitionSpec(spec_id=0, fields=[])
def get_sample_data():
# Create sample data with binary field
return pa.Table.from_pylist([
{"city": "Amsterdam", "lat": 52.371807, "long": 4.896029, "portal_id": 9,
"timestamp_day": 20240301, "binary_data": b"Amsterdam data"},
{"city": "San Francisco", "lat": 37.773972, "long": -122.431297, "portal_id": 9,
"timestamp_day": 20240301, "binary_data": b"San Francisco data"},
{"city": "Drachten", "lat": 53.11254, "long": 6.0989, "portal_id": 10,
"timestamp_day": 20240302, "binary_data": b"Drachten data"},
{"city": "Paris", "lat": 48.864716, "long": 2.349014, "portal_id": 10,
"timestamp_day": 20240302, "binary_data": b"Paris data"},
])
def compare_datafiles(expected: Any, actual: Any) -> Dict[str, Any]:
"""
Compare two DataFile objects and return differences.
Returns empty dict if they're identical, otherwise returns the differences.
Args:
expected: First DataFile object to compare
actual: Second DataFile object to compare
Returns:
Dictionary of differences, empty if objects are identical
Raises:
TypeError: If either argument is not a DataFile
"""
# Input validation - make sure both are actually DataFile objects
if not isinstance(expected, DataFile):
raise TypeError(f"First argument must be a DataFile, got {type(expected)} instead")
if not isinstance(actual, DataFile):
raise TypeError(f"Second argument must be a DataFile, got {type(actual)} instead")
differences = {}
# Compare all slots from DataFile
for slot in expected.__class__.__slots__:
if slot == "_struct": # Skip internal struct field
continue
if hasattr(expected, slot) and hasattr(actual, slot):
expected_value = getattr(expected, slot)
actual_value = getattr(actual, slot)
# Special handling for different types
if isinstance(expected_value, Record) and isinstance(actual_value, Record):
# Enhanced comparison for Record objects (especially partition)
record_differences = {}
# Check structure (_position_to_field_name)
if hasattr(expected_value, "_position_to_field_name") and hasattr(actual_value,
"_position_to_field_name"):
orig_fields = expected_value._position_to_field_name
des_fields = actual_value._position_to_field_name
if orig_fields != des_fields:
record_differences["_position_to_field_name"] = {
"expected": orig_fields,
"actual": des_fields
}
# Check data values
if hasattr(expected_value, "_data") and hasattr(actual_value, "_data"):
# Ensure both _data attributes are tuples/lists and have values
orig_data = expected_value._data if expected_value._data else ()
des_data = actual_value._data if actual_value._data else ()
# Check if one is empty but the other isn't
if bool(orig_data) != bool(des_data):
record_differences["_data_presence"] = {
"expected": "present" if orig_data else "empty",
"actual": "present" if des_data else "empty"
}
# Compare content if both exist
if orig_data and des_data:
if len(orig_data) != len(des_data):
record_differences["_data_length"] = {
"expected": len(orig_data),
"actual": len(des_data)
}
else:
# Compare each item
for i, (orig_item, des_item) in enumerate(zip(orig_data, des_data)):
if orig_item != des_item:
record_differences[f"_data[{i}]"] = {
"expected": orig_item,
"actual": des_item
}
# Additional check: Try to access fields directly as attributes
if hasattr(expected_value, "_position_to_field_name"):
for field_name in expected_value._position_to_field_name:
orig_attr = getattr(expected_value, field_name, None)
des_attr = getattr(actual_value, field_name, None)
if orig_attr != des_attr:
record_differences[f"attr.{field_name}"] = {
"expected": orig_attr,
"actual": des_attr
}
# If any differences were found in the record
if record_differences:
differences[slot] = record_differences
elif isinstance(expected_value, dict) and isinstance(actual_value, dict):
# Compare dictionaries (like lower_bounds, upper_bounds)
if set(expected_value.keys()) != set(actual_value.keys()):
differences[f"{slot}.keys"] = {
"expected": set(expected_value.keys()),
"actual": set(actual_value.keys())
}
# Compare values
for key in expected_value:
if key in actual_value:
if expected_value[key] != actual_value[key]:
differences[f"{slot}[{key}]"] = {
"expected": expected_value[key],
"actual": actual_value[key]
}
elif expected_value != actual_value:
differences[slot] = {
"expected": expected_value,
"actual": actual_value
}
return differences
class TestIcebergBase:
"""Base class for Iceberg tests with shared methods"""
def serialize_and_deserialize(self, sample_data_file):
"""Helper method to serialize and deserialize a DataFile"""
# Encode
output = BytesIO()
encoder = BinaryEncoder(output)
schema = DATA_FILE_TYPE[DEFAULT_READ_VERSION]
construct_writer(file_schema=schema).write(encoder, sample_data_file)
output = output.getvalue()
# Decode
decoder = CythonBinaryDecoder(output)
actual_data_file = resolve_reader(
schema,
schema,
read_types={-1: DataFile},
).read(decoder)
return actual_data_file
def append_data_file(self, table, data_file):
"""Helper method to append a DataFile to a table"""
with table.transaction() as trx:
with trx.update_snapshot().fast_append() as update_snapshot:
update_snapshot.append_data_file(data_file)
@pytest.fixture(scope="class")
def iceberg_setup_with_partition():
"""Create a temporary Iceberg table with partitioning"""
# Set data files output directory
temp_dir = tempfile.mkdtemp()
os.environ["PYICEBERG_PARQUET_OUTPUT"] = temp_dir
# Create a catalog and schema
catalog = load_catalog("catalog", type="in-memory")
catalog.create_namespace("default")
# Create table with partitioning
table = catalog.create_table(
identifier="default.cities_with_partition",
schema=get_schema(),
partition_spec=get_partition_spec()
)
# Create sample data with binary field
data = get_sample_data()
data_files = list(_dataframe_to_data_files(
table_metadata=table.metadata, write_uuid=uuid.uuid4(), df=data, io=table.io))
yield {
"catalog": catalog,
"table": table,
"sample_data_file": data_files[0],
"data_files": data_files
}
# Cleanup after all tests
if os.path.exists(temp_dir):
for root, dirs, files in os.walk(temp_dir, topdown=False):
for file in files:
os.remove(os.path.join(root, file))
for dir in dirs:
os.rmdir(os.path.join(root, dir))
os.rmdir(temp_dir)
@pytest.fixture(scope="class")
def iceberg_setup_no_partition():
"""Create a temporary Iceberg table without partitioning"""
# Set data files output directory
temp_dir = tempfile.mkdtemp()
os.environ["PYICEBERG_PARQUET_OUTPUT"] = temp_dir
# Create a catalog and schema
catalog = load_catalog("catalog", type="in-memory")
catalog.create_namespace("default")
# Create table without partitioning
table = catalog.create_table(
identifier="default.cities_no_partition",
schema=get_schema(),
partition_spec=get_empty_partition_spec()
)
# Create sample data with binary field
data = get_sample_data()
data_files = list(_dataframe_to_data_files(
table_metadata=table.metadata, write_uuid=uuid.uuid4(), df=data, io=table.io))
yield {
"catalog": catalog,
"table": table,
"sample_data_file": data_files[0],
"data_files": data_files
}
# Cleanup after all tests
if os.path.exists(temp_dir):
for root, dirs, files in os.walk(temp_dir, topdown=False):
for file in files:
os.remove(os.path.join(root, file))
for dir in dirs:
os.rmdir(os.path.join(root, dir))
os.rmdir(temp_dir)
class TestIcebergWithPartition(TestIcebergBase):
"""Tests for Iceberg operations with partition"""
@pytest.fixture(autouse=True)
def setup(self, iceberg_setup_with_partition):
"""Setup for all tests in this class"""
self.setup_data = iceberg_setup_with_partition
self.sample_data_file = self.setup_data["sample_data_file"]
self.data_files = self.setup_data["data_files"]
self.table = self.setup_data["table"]
def test_serialize(self):
"""Test serializing and deserializing DataFile with partition"""
actual_data_file = self.serialize_and_deserialize(self.sample_data_file)
differences = compare_datafiles(self.sample_data_file, actual_data_file)
assert not differences, f"Found differences: {differences}"
def test_fast_append_working(self):
"""Test fast append with native DataFile with partition"""
self.append_data_file(self.table, self.data_files[0])
def test_fast_append_with_avro(self):
"""Test fast append with Avro deserialized DataFile with partition"""
actual_data_file = self.serialize_and_deserialize(self.sample_data_file)
self.append_data_file(self.table, actual_data_file)
class TestIcebergNoPartition(TestIcebergBase):
"""Tests for Iceberg operations without partition"""
@pytest.fixture(autouse=True)
def setup(self, iceberg_setup_no_partition):
"""Setup for all tests in this class"""
self.setup_data = iceberg_setup_no_partition
self.sample_data_file = self.setup_data["sample_data_file"]
self.data_files = self.setup_data["data_files"]
self.table = self.setup_data["table"]
def test_serialize(self):
"""Test serializing and deserializing DataFile without partition"""
actual_data_file = self.serialize_and_deserialize(self.sample_data_file)
differences = compare_datafiles(self.sample_data_file, actual_data_file)
assert not differences, f"Found differences: {differences}"
def test_fast_append_working(self):
"""Test fast append with native DataFile without partition"""
self.append_data_file(self.table, self.data_files[0])
def test_fast_append_with_avro(self):
"""Test fast append with Avro deserialized DataFile without partition"""
actual_data_file = self.serialize_and_deserialize(self.sample_data_file)
self.append_data_file(self.table, actual_data_file) |
Hi @Fokko, I'd like to share a working example that demonstrates how to serialize and deserialize both partition and non-partitioned tables: output = BytesIO()
# Get table schema
partition_type = table.spec().partition_type(schema=table.schema())
schema = data_file_with_partition(format_version= table.format_version, partition_type=partition_type)
# Encode
encoder = BinaryEncoder(output)
construct_writer(file_schema=schema).write(encoder, data_file)
output = output.getvalue()
# Decode
decoder = CythonBinaryDecoder(output)
actual_data_file = resolve_reader(schema, schema, read_types={-1: DataFile}, ).read(decoder) I believe we should expand the documentation so the community can benefit from this work. However, I'm not sure which section would be most appropriate since this is an advanced topic that doesn't require code changes. Additionally, I think we should create a public wrapper around Full unittest import os
import uuid
from typing import Any, Dict
import pytest
import tempfile
import pyarrow as pa
from io import BytesIO
from pyiceberg.io.pyarrow import _dataframe_to_data_files
from pyiceberg.schema import Schema
from pyiceberg.types import NestedField, StringType, DoubleType, LongType, BinaryType
from pyiceberg.partitioning import PartitionSpec, PartitionField
from pyiceberg.transforms import IdentityTransform
from pyiceberg.avro.decoder_fast import CythonBinaryDecoder
from pyiceberg.avro.encoder import BinaryEncoder
from pyiceberg.avro.resolver import construct_writer, resolve_reader
from pyiceberg.manifest import DATA_FILE_TYPE, DEFAULT_READ_VERSION, DataFile, data_file_with_partition
from pyiceberg.typedef import Record
from pyiceberg.catalog import load_catalog
def get_schema():
# Define schema with partitioned fields
return Schema(
NestedField(1, "city", StringType(), required=False),
NestedField(2, "lat", DoubleType(), required=False),
NestedField(3, "long", DoubleType(), required=False),
NestedField(4, "portal_id", LongType(), required=False),
NestedField(5, "timestamp_day", LongType(), required=False),
NestedField(6, "binary_data", BinaryType(), required=False),
)
def get_partition_spec():
# Define partition spec (portal_id, timestamp_day)
return PartitionSpec(
spec_id=0,
fields=[
PartitionField(
source_id=4,
field_id=1000,
transform=IdentityTransform(),
name="portal_id"
),
PartitionField(
source_id=5,
field_id=1001,
transform=IdentityTransform(),
name="timestamp_day"
),
]
)
def get_empty_partition_spec():
# Define empty partition spec for non-partitioned tests
return PartitionSpec(spec_id=0, fields=[])
def get_sample_data():
# Create sample data with binary field
return pa.Table.from_pylist([
{"city": "Amsterdam", "lat": 52.371807, "long": 4.896029, "portal_id": 9,
"timestamp_day": 20240301, "binary_data": b"Amsterdam data"},
{"city": "San Francisco", "lat": 37.773972, "long": -122.431297, "portal_id": 9,
"timestamp_day": 20240301, "binary_data": b"San Francisco data"},
{"city": "Drachten", "lat": 53.11254, "long": 6.0989, "portal_id": 10,
"timestamp_day": 20240302, "binary_data": b"Drachten data"},
{"city": "Paris", "lat": 48.864716, "long": 2.349014, "portal_id": 10,
"timestamp_day": 20240302, "binary_data": b"Paris data"},
])
def compare_datafiles(expected: Any, actual: Any) -> Dict[str, Any]:
"""
Compare two DataFile objects and return differences.
Returns empty dict if they're identical, otherwise returns the differences.
Args:
expected: First DataFile object to compare
actual: Second DataFile object to compare
Returns:
Dictionary of differences, empty if objects are identical
Raises:
TypeError: If either argument is not a DataFile
"""
# Input validation - make sure both are actually DataFile objects
if not isinstance(expected, DataFile):
raise TypeError(f"First argument must be a DataFile, got {type(expected)} instead")
if not isinstance(actual, DataFile):
raise TypeError(f"Second argument must be a DataFile, got {type(actual)} instead")
differences = {}
# Compare all slots from DataFile
for slot in expected.__class__.__slots__:
if slot == "_struct": # Skip internal struct field
continue
if hasattr(expected, slot) and hasattr(actual, slot):
expected_value = getattr(expected, slot)
actual_value = getattr(actual, slot)
# Special handling for different types
if isinstance(expected_value, Record) and isinstance(actual_value, Record):
# Enhanced comparison for Record objects (especially partition)
record_differences = {}
# Check structure (_position_to_field_name)
if hasattr(expected_value, "_position_to_field_name") and hasattr(actual_value,
"_position_to_field_name"):
orig_fields = expected_value._position_to_field_name
des_fields = actual_value._position_to_field_name
if orig_fields != des_fields:
record_differences["_position_to_field_name"] = {
"expected": orig_fields,
"actual": des_fields
}
# Check data values
if hasattr(expected_value, "_data") and hasattr(actual_value, "_data"):
# Ensure both _data attributes are tuples/lists and have values
orig_data = expected_value._data if expected_value._data else ()
des_data = actual_value._data if actual_value._data else ()
# Check if one is empty but the other isn't
if bool(orig_data) != bool(des_data):
record_differences["_data_presence"] = {
"expected": "present" if orig_data else "empty",
"actual": "present" if des_data else "empty"
}
# Compare content if both exist
if orig_data and des_data:
if len(orig_data) != len(des_data):
record_differences["_data_length"] = {
"expected": len(orig_data),
"actual": len(des_data)
}
else:
# Compare each item
for i, (orig_item, des_item) in enumerate(zip(orig_data, des_data)):
if orig_item != des_item:
record_differences[f"_data[{i}]"] = {
"expected": orig_item,
"actual": des_item
}
# Additional check: Try to access fields directly as attributes
if hasattr(expected_value, "_position_to_field_name"):
for field_name in expected_value._position_to_field_name:
orig_attr = getattr(expected_value, field_name, None)
des_attr = getattr(actual_value, field_name, None)
if orig_attr != des_attr:
record_differences[f"attr.{field_name}"] = {
"expected": orig_attr,
"actual": des_attr
}
# If any differences were found in the record
if record_differences:
differences[slot] = record_differences
elif isinstance(expected_value, dict) and isinstance(actual_value, dict):
# Compare dictionaries (like lower_bounds, upper_bounds)
if set(expected_value.keys()) != set(actual_value.keys()):
differences[f"{slot}.keys"] = {
"expected": set(expected_value.keys()),
"actual": set(actual_value.keys())
}
# Compare values
for key in expected_value:
if key in actual_value:
if expected_value[key] != actual_value[key]:
differences[f"{slot}[{key}]"] = {
"expected": expected_value[key],
"actual": actual_value[key]
}
elif expected_value != actual_value:
differences[slot] = {
"expected": expected_value,
"actual": actual_value
}
return differences
class TestIcebergBase:
"""Base class for Iceberg tests with shared methods"""
def serialize_and_deserialize(self, table, data_file):
"""Helper method to serialize and deserialize a DataFile"""
output = BytesIO()
# Get table schema
partition_type = table.spec().partition_type(schema=table.schema())
schema = data_file_with_partition(format_version= table.format_version, partition_type=partition_type)
# Encode
encoder = BinaryEncoder(output)
construct_writer(file_schema=schema).write(encoder, data_file)
output = output.getvalue()
# Decode
decoder = CythonBinaryDecoder(output)
actual_data_file = resolve_reader(schema, schema, read_types={-1: DataFile}, ).read(decoder)
return actual_data_file
def append_data_file(self, table, data_file):
"""Helper method to append a DataFile to a table"""
with table.transaction() as trx:
with trx.update_snapshot().fast_append() as update_snapshot:
update_snapshot.append_data_file(data_file)
@staticmethod
def serialize_datafile_to_avro_file(datafile: DataFile, file_path: str) -> None:
"""
Serialize a DataFile to Avro format and write it directly to disk.
Args:
datafile: The DataFile object to serialize
file_path: The path where the file should be written
"""
schema = DATA_FILE_TYPE[DEFAULT_READ_VERSION]
# Open a file for binary writing
with open(file_path, 'wb') as file_output:
encoder = BinaryEncoder(file_output)
construct_writer(file_schema=schema).write(encoder, datafile)
@pytest.fixture(scope="class")
def iceberg_setup_with_partition():
"""Create a temporary Iceberg table with partitioning"""
# Set data files output directory
temp_dir = tempfile.mkdtemp()
os.environ["PYICEBERG_PARQUET_OUTPUT"] = temp_dir
# Create a catalog and schema
catalog = load_catalog("catalog", type="in-memory")
catalog.create_namespace("default")
# Create table with partitioning
table = catalog.create_table(
identifier="default.cities_with_partition",
schema=get_schema(),
partition_spec=get_partition_spec()
)
# Create sample data with binary field
data = get_sample_data()
data_files = list(_dataframe_to_data_files(
table_metadata=table.metadata, write_uuid=uuid.uuid4(), df=data, io=table.io))
yield {
"catalog": catalog,
"table": table,
"sample_data_file": data_files[0],
"data_files": data_files
}
# Cleanup after all tests
if os.path.exists(temp_dir):
for root, dirs, files in os.walk(temp_dir, topdown=False):
for file in files:
os.remove(os.path.join(root, file))
for dir in dirs:
os.rmdir(os.path.join(root, dir))
os.rmdir(temp_dir)
@pytest.fixture(scope="class")
def iceberg_setup_no_partition():
"""Create a temporary Iceberg table without partitioning"""
# Set data files output directory
temp_dir = tempfile.mkdtemp()
os.environ["PYICEBERG_PARQUET_OUTPUT"] = temp_dir
# Create a catalog and schema
catalog = load_catalog("catalog", type="in-memory")
catalog.create_namespace("default")
# Create table without partitioning
table = catalog.create_table(
identifier="default.cities_no_partition",
schema=get_schema(),
partition_spec=get_empty_partition_spec()
)
# Create sample data with binary field
data = get_sample_data()
data_files = list(_dataframe_to_data_files(
table_metadata=table.metadata, write_uuid=uuid.uuid4(), df=data, io=table.io))
yield {
"catalog": catalog,
"table": table,
"sample_data_file": data_files[0],
"data_files": data_files
}
# Cleanup after all tests
if os.path.exists(temp_dir):
for root, dirs, files in os.walk(temp_dir, topdown=False):
for file in files:
os.remove(os.path.join(root, file))
for dir in dirs:
os.rmdir(os.path.join(root, dir))
os.rmdir(temp_dir)
class TestIcebergWithPartition(TestIcebergBase):
"""Tests for Iceberg operations with partition"""
@pytest.fixture(autouse=True)
def setup(self, iceberg_setup_with_partition):
"""Setup for all tests in this class"""
self.setup_data = iceberg_setup_with_partition
self.sample_data_file = self.setup_data["sample_data_file"]
self.data_files = self.setup_data["data_files"]
self.table = self.setup_data["table"]
def test_serialize(self):
"""Test serializing and deserializing DataFile with partition"""
actual_data_file = self.serialize_and_deserialize(self.table, self.sample_data_file)
differences = compare_datafiles(self.sample_data_file, actual_data_file)
assert not differences, f"Found differences: {differences}"
def test_fast_append_working(self):
"""Test fast append with native DataFile with partition"""
self.append_data_file(self.table, self.data_files[0])
def test_fast_append_with_avro(self):
"""Test fast append with Avro deserialized DataFile with partition"""
actual_data_file = self.serialize_and_deserialize(self.table, self.sample_data_file)
self.append_data_file(self.table, actual_data_file)
class TestIcebergNoPartition(TestIcebergBase):
"""Tests for Iceberg operations without partition"""
@pytest.fixture(autouse=True)
def setup(self, iceberg_setup_no_partition):
"""Setup for all tests in this class"""
self.setup_data = iceberg_setup_no_partition
self.sample_data_file = self.setup_data["sample_data_file"]
self.data_files = self.setup_data["data_files"]
self.table = self.setup_data["table"]
def test_serialize(self):
"""Test serializing and deserializing DataFile without partition"""
actual_data_file = self.serialize_and_deserialize(self.table, self.sample_data_file)
differences = compare_datafiles(self.sample_data_file, actual_data_file)
assert not differences, f"Found differences: {differences}"
def test_fast_append_working(self):
"""Test fast append with native DataFile without partition"""
self.append_data_file(self.table, self.data_files[0])
def test_fast_append_with_avro(self):
"""Test fast append with Avro deserialized DataFile without partition"""
actual_data_file = self.serialize_and_deserialize(self.table, self.sample_data_file)
self.append_data_file(self.table, actual_data_file) |
Hey @andormarkus Thanks for sharing. that looks great! I'm all in favor of supporting this. Very much looking forward to the PR Should we support |
Feature Request / Improvement
Problem Statement
A key problem in distributed Iceberg systems is that commit processes can block each other when multiple workers try to update table metadata simultaneously. This blocking creates a severe performance bottleneck that limits throughput, particularly in high-volume ingestion scenarios.
Use Case
In our distributed architecture:
This pattern is especially useful for high-concurrency ingestion scenarios where multiple writers could be writing data to an Iceberg table simultaneously, but we want to centralize and coordinate the commit process. This approach is critical because in distributed environments, commit processes can block each other, creating a significant bottleneck in high-throughput scenarios.
Detailed Workflow
Our workflow involves:
This separation of write and commit operations provides several advantages:
Current Limitations
DataFile
objects between processes is challengingjsonpickle
also presented significant problemsProposed Solution
We're seeking a robust way to handle distributed writes, potentially with:
DataFile
classDataFile
objects (potentially smaller than other approaches)append_data_file
APIIdeally, the solution would:
add_files
approach which has issues when schema changes)Alternative Approaches Tried
Related PRs/Issues
write_parquet
API for writing Parquet files without committing #1742 (closed): Original attempt at write_parquet APIWe're looking for guidance on the best approach to solve this distributed writing pattern while maintaining performance and schema compatibility.
The text was updated successfully, but these errors were encountered: