-
Notifications
You must be signed in to change notification settings - Fork 216
/
Copy pathHCI.cpp
1486 lines (1325 loc) · 46.4 KB
/
HCI.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
This file is part of the ArduinoBLE library.
Copyright (c) 2018 Arduino SA. All rights reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "ATT.h"
#include "GAP.h"
#include "HCITransport.h"
#include "L2CAPSignaling.h"
#include "btct.h"
#include "HCI.h"
#include "bitDescriptions.h"
// #define _BLE_TRACE_
#define HCI_COMMAND_PKT 0x01
#define HCI_ACLDATA_PKT 0x02
#define HCI_EVENT_PKT 0x04
#define HCI_SECURITY_PKT 0x06
#define EVT_DISCONN_COMPLETE 0x05
#define EVT_ENCRYPTION_CHANGE 0x08
#define EVT_CMD_COMPLETE 0x0e
#define EVT_CMD_STATUS 0x0f
#define EVT_NUM_COMP_PKTS 0x13
#define EVT_RETURN_LINK_KEYS 0x15
#define EVT_UNKNOWN 0x10
#define EVT_LE_META_EVENT 0x3e
#define EVT_LE_CONN_COMPLETE 0x01
#define EVT_LE_ADVERTISING_REPORT 0x02
// OGF_LINK_CTL
#define OCF_DISCONNECT 0x0006
// OGF_HOST_CTL
#define OCF_SET_EVENT_MASK 0x0001
#define OCF_RESET 0x0003
// OGF_INFO_PARAM
#define OCF_READ_LOCAL_VERSION 0x0001
#define OCF_READ_BD_ADDR 0x0009
// OGF_STATUS_PARAM
#define OCF_READ_RSSI 0x0005
// OGF_LE_CTL
#define OCF_LE_READ_BUFFER_SIZE 0x0002
#define OCF_LE_SET_RANDOM_ADDRESS 0x0005
#define OCF_LE_SET_ADVERTISING_PARAMETERS 0x0006
#define OCF_LE_SET_ADVERTISING_DATA 0x0008
#define OCF_LE_SET_SCAN_RESPONSE_DATA 0x0009
#define OCF_LE_SET_ADVERTISE_ENABLE 0x000a
#define OCF_LE_SET_SCAN_PARAMETERS 0x000b
#define OCF_LE_SET_SCAN_ENABLE 0x000c
#define OCF_LE_CREATE_CONN 0x000d
#define OCF_LE_CANCEL_CONN 0x000e
#define OCF_LE_CONN_UPDATE 0x0013
#define HCI_OE_USER_ENDED_CONNECTION 0x13
String metaEventToString(LE_META_EVENT event)
{
switch(event){
case CONN_COMPLETE: return F("CONN_COMPLETE");
case ADVERTISING_REPORT: return F("ADVERTISING_REPORT");
case LONG_TERM_KEY_REQUEST: return F("LE_LONG_TERM_KEY_REQUEST");
case READ_LOCAL_P256_COMPLETE: return F("READ_LOCAL_P256_COMPLETE");
case GENERATE_DH_KEY_COMPLETE: return F("GENERATE_DH_KEY_COMPLETE");
default: return "event unknown";
}
}
String commandToString(LE_COMMAND command){
switch (command)
{
case ENCRYPT: return F("ENCRYPT");
case LONG_TERM_KEY_REPLY: return F("LONG_TERM_KEY_REPLY");
case READ_LOCAL_P256: return F("READ_LOCAL_P256");
case GENERATE_DH_KEY_V1: return F("GENERATE_DH_KEY_V1");
case GENERATE_DH_KEY_V2: return F("GENERATE_DH_KEY_V2");
default: return "UNKNOWN";
}
}
HCIClass::HCIClass() :
_debug(NULL),
_recvIndex(0),
_pendingPkt(0)
{
}
HCIClass::~HCIClass()
{
}
int HCIClass::begin()
{
_recvIndex = 0;
return HCITransport.begin();
}
void HCIClass::end()
{
HCITransport.end();
}
void HCIClass::poll()
{
poll(0);
}
void HCIClass::poll(unsigned long timeout)
{
#ifdef ARDUINO_AVR_UNO_WIFI_REV2
digitalWrite(NINA_RTS, LOW);
#endif
if (timeout) {
HCITransport.wait(timeout);
}
while (HCITransport.available()) {
byte b = HCITransport.read();
if (_recvIndex >= sizeof(_recvBuffer)) {
_recvIndex = 0;
if (_debug) {
_debug->println("_recvBuffer overflow");
}
}
_recvBuffer[_recvIndex++] = b;
if (_recvBuffer[0] == HCI_ACLDATA_PKT) {
if (_recvIndex > 5 && _recvIndex >= (5 + (_recvBuffer[3] + (_recvBuffer[4] << 8)))) {
if (_debug) {
dumpPkt("HCI ACLDATA RX <- ", _recvIndex, _recvBuffer);
}
#ifdef ARDUINO_AVR_UNO_WIFI_REV2
digitalWrite(NINA_RTS, HIGH);
#endif
int pktLen = _recvIndex - 1;
_recvIndex = 0;
handleAclDataPkt(pktLen, &_recvBuffer[1]);
#ifdef ARDUINO_AVR_UNO_WIFI_REV2
digitalWrite(NINA_RTS, LOW);
#endif
}
} else if (_recvBuffer[0] == HCI_EVENT_PKT) {
if (_recvIndex > 3 && _recvIndex >= (3 + _recvBuffer[2])) {
if (_debug) {
dumpPkt("HCI EVENT RX <- ", _recvIndex, _recvBuffer);
}
#ifdef ARDUINO_AVR_UNO_WIFI_REV2
digitalWrite(NINA_RTS, HIGH);
#endif
// received full event
int pktLen = _recvIndex - 1;
_recvIndex = 0;
handleEventPkt(pktLen, &_recvBuffer[1]);
#ifdef ARDUINO_AVR_UNO_WIFI_REV2
digitalWrite(NINA_RTS, LOW);
#endif
}
} else {
_recvIndex = 0;
if (_debug) {
_debug->println(b, HEX);
}
}
}
#ifdef ARDUINO_AVR_UNO_WIFI_REV2
digitalWrite(NINA_RTS, HIGH);
#endif
}
int HCIClass::reset()
{
return sendCommand(OGF_HOST_CTL << 10 | OCF_RESET);
}
int HCIClass::readLocalVersion(uint8_t& hciVer, uint16_t& hciRev, uint8_t& lmpVer, uint16_t& manufacturer, uint16_t& lmpSubVer)
{
int result = sendCommand(OGF_INFO_PARAM << 10 | OCF_READ_LOCAL_VERSION);
if (result == 0) {
struct __attribute__ ((packed)) HCILocalVersion {
uint8_t hciVer;
uint16_t hciRev;
uint8_t lmpVer;
uint16_t manufacturer;
uint16_t lmpSubVer;
} *localVersion = (HCILocalVersion*)_cmdResponse;
hciVer = localVersion->hciVer;
hciRev = localVersion->hciRev;
lmpVer = localVersion->lmpVer;
manufacturer = localVersion->manufacturer;
lmpSubVer = localVersion->lmpSubVer;
}
return result;
}
int HCIClass::readBdAddr(uint8_t addr[6])
{
int result = sendCommand(OGF_INFO_PARAM << 10 | OCF_READ_BD_ADDR);
if (result == 0) {
memcpy(addr, _cmdResponse, 6);
}
return result;
}
int HCIClass::readBdAddr(){
uint8_t response[6];
int result = readBdAddr(response);
if(result==0){
for(int i=0; i<6; i++){
localAddr[5-i] = _cmdResponse[i];
}
}
return result;
}
int HCIClass::readRssi(uint16_t handle)
{
int result = sendCommand(OGF_STATUS_PARAM << 10 | OCF_READ_RSSI, sizeof(handle), &handle);
int rssi = 127;
if (result == 0) {
struct __attribute__ ((packed)) HCIReadRssi {
uint16_t handle;
int8_t rssi;
} *readRssi = (HCIReadRssi*)_cmdResponse;
if (readRssi->handle == handle) {
rssi = readRssi->rssi;
}
}
return rssi;
}
int HCIClass::setEventMask(uint64_t eventMask)
{
return sendCommand(OGF_HOST_CTL << 10 | OCF_SET_EVENT_MASK, sizeof(eventMask), &eventMask);
}
// Set LE Event mask
int HCIClass::setLeEventMask(uint64_t leEventMask)
{
return sendCommand(OGF_LE_CTL << 10 | 0x01, sizeof(leEventMask), &leEventMask);
}
int HCIClass::readLeBufferSize(uint16_t& pktLen, uint8_t& maxPkt)
{
int result = sendCommand(OGF_LE_CTL << 10 | OCF_LE_READ_BUFFER_SIZE);
if (result == 0) {
struct __attribute__ ((packed)) HCILeBufferSize {
uint16_t pktLen;
uint8_t maxPkt;
} *leBufferSize = (HCILeBufferSize*)_cmdResponse;
pktLen = leBufferSize->pktLen;
_maxPkt = maxPkt = leBufferSize->maxPkt;
#ifndef __AVR__
ATT.setMaxMtu(pktLen - 9); // max pkt len - ACL header size
#endif
}
return result;
}
int HCIClass::leSetRandomAddress(uint8_t addr[6])
{
return sendCommand(OGF_LE_CTL << 10 | OCF_LE_SET_RANDOM_ADDRESS, 6, addr);
}
int HCIClass::leSetAdvertisingParameters(uint16_t minInterval, uint16_t maxInterval,
uint8_t advType, uint8_t ownBdaddrType,
uint8_t directBdaddrType, uint8_t directBdaddr[6],
uint8_t chanMap,
uint8_t filter)
{
struct __attribute__ ((packed)) HCILeAdvertisingParameters {
uint16_t minInterval;
uint16_t maxInterval;
uint8_t advType;
uint8_t ownBdaddrType;
uint8_t directBdaddrType;
uint8_t directBdaddr[6];
uint8_t chanMap;
uint8_t filter;
} leAdvertisingParamters;
leAdvertisingParamters.minInterval = minInterval;
leAdvertisingParamters.maxInterval = maxInterval;
leAdvertisingParamters.advType = advType;
leAdvertisingParamters.ownBdaddrType = ownBdaddrType;
leAdvertisingParamters.directBdaddrType = directBdaddrType;
memcpy(leAdvertisingParamters.directBdaddr, directBdaddr, 6);
leAdvertisingParamters.chanMap = chanMap;
leAdvertisingParamters.filter = filter;
return sendCommand(OGF_LE_CTL << 10 | OCF_LE_SET_ADVERTISING_PARAMETERS, sizeof(leAdvertisingParamters), &leAdvertisingParamters);
}
int HCIClass::leSetAdvertisingData(uint8_t length, uint8_t data[])
{
struct __attribute__ ((packed)) HCILeAdvertisingData {
uint8_t length;
uint8_t data[31];
} leAdvertisingData;
memset(&leAdvertisingData, 0, sizeof(leAdvertisingData));
leAdvertisingData.length = length;
memcpy(leAdvertisingData.data, data, length);
return sendCommand(OGF_LE_CTL << 10 | OCF_LE_SET_ADVERTISING_DATA, sizeof(leAdvertisingData), &leAdvertisingData);
}
int HCIClass::leSetScanResponseData(uint8_t length, uint8_t data[])
{
struct __attribute__ ((packed)) HCILeScanResponseData {
uint8_t length;
uint8_t data[31];
} leScanResponseData;
memset(&leScanResponseData, 0, sizeof(leScanResponseData));
leScanResponseData.length = length;
memcpy(leScanResponseData.data, data, length);
return sendCommand(OGF_LE_CTL << 10 | OCF_LE_SET_SCAN_RESPONSE_DATA, sizeof(leScanResponseData), &leScanResponseData);
}
int HCIClass::leSetAdvertiseEnable(uint8_t enable)
{
return sendCommand(OGF_LE_CTL << 10 | OCF_LE_SET_ADVERTISE_ENABLE, sizeof(enable), &enable);
}
int HCIClass::leSetScanParameters(uint8_t type, uint16_t interval, uint16_t window,
uint8_t ownBdaddrType, uint8_t filter)
{
struct __attribute__ ((packed)) HCILeSetScanParameters {
uint8_t type;
uint16_t interval;
uint16_t window;
uint8_t ownBdaddrType;
uint8_t filter;
} leScanParameters;
leScanParameters.type = type;
leScanParameters.interval = interval;
leScanParameters.window = window;
leScanParameters.ownBdaddrType = ownBdaddrType;
leScanParameters.filter = filter;
return sendCommand(OGF_LE_CTL << 10 | OCF_LE_SET_SCAN_PARAMETERS, sizeof(leScanParameters), &leScanParameters);
}
int HCIClass::leSetScanEnable(uint8_t enabled, uint8_t duplicates)
{
struct __attribute__ ((packed)) HCILeSetScanEnableData {
uint8_t enabled;
uint8_t duplicates;
} leScanEnableData;
leScanEnableData.enabled = enabled;
leScanEnableData.duplicates = duplicates;
return sendCommand(OGF_LE_CTL << 10 | OCF_LE_SET_SCAN_ENABLE, sizeof(leScanEnableData), &leScanEnableData);
}
int HCIClass::leCreateConn(uint16_t interval, uint16_t window, uint8_t initiatorFilter,
uint8_t peerBdaddrType, uint8_t peerBdaddr[6], uint8_t ownBdaddrType,
uint16_t minInterval, uint16_t maxInterval, uint16_t latency,
uint16_t supervisionTimeout, uint16_t minCeLength, uint16_t maxCeLength)
{
struct __attribute__ ((packed)) HCILeCreateConnData {
uint16_t interval;
uint16_t window;
uint8_t initiatorFilter;
uint8_t peerBdaddrType;
uint8_t peerBdaddr[6];
uint8_t ownBdaddrType;
uint16_t minInterval;
uint16_t maxInterval;
uint16_t latency;
uint16_t supervisionTimeout;
uint16_t minCeLength;
uint16_t maxCeLength;
} leCreateConnData;
leCreateConnData.interval = interval;
leCreateConnData.window = window;
leCreateConnData.initiatorFilter = initiatorFilter;
leCreateConnData.peerBdaddrType = peerBdaddrType;
memcpy(leCreateConnData.peerBdaddr, peerBdaddr, sizeof(leCreateConnData.peerBdaddr));
leCreateConnData.ownBdaddrType = ownBdaddrType;
leCreateConnData.minInterval = minInterval;
leCreateConnData.maxInterval = maxInterval;
leCreateConnData.latency = latency;
leCreateConnData.supervisionTimeout = supervisionTimeout;
leCreateConnData.minCeLength = minCeLength;
leCreateConnData.maxCeLength = maxCeLength;
return sendCommand(OGF_LE_CTL << 10 | OCF_LE_CREATE_CONN, sizeof(leCreateConnData), &leCreateConnData);
}
int HCIClass::leCancelConn()
{
return sendCommand(OGF_LE_CTL << 10 | OCF_LE_CANCEL_CONN, 0, NULL);
}
int HCIClass::leConnUpdate(uint16_t handle, uint16_t minInterval, uint16_t maxInterval,
uint16_t latency, uint16_t supervisionTimeout)
{
struct __attribute__ ((packed)) HCILeConnUpdateData {
uint16_t handle;
uint16_t minInterval;
uint16_t maxInterval;
uint16_t latency;
uint16_t supervisionTimeout;
uint16_t minCeLength;
uint16_t maxCeLength;
} leConnUpdateData;
leConnUpdateData.handle = handle;
leConnUpdateData.minInterval = minInterval;
leConnUpdateData.maxInterval = maxInterval;
leConnUpdateData.latency = latency;
leConnUpdateData.supervisionTimeout = supervisionTimeout;
leConnUpdateData.minCeLength = 0x0004;
leConnUpdateData.maxCeLength = 0x0006;
return sendCommand(OGF_LE_CTL << 10 | OCF_LE_CONN_UPDATE, sizeof(leConnUpdateData), &leConnUpdateData);
}
void HCIClass::saveNewAddress(uint8_t addressType, uint8_t* address, uint8_t* peerIrk, uint8_t* localIrk){
if(_storeIRK!=0){
_storeIRK(address, peerIrk);
}
// Again... this should work
// leAddResolvingAddress(addressType, address, peerIrk, localIrk);
}
void HCIClass::leAddResolvingAddress(uint8_t addressType, uint8_t* peerAddress, uint8_t* peerIrk, uint8_t* localIrk){
leStopResolvingAddresses();
struct __attribute__ ((packed)) AddDevice {
uint8_t peerAddressType;
uint8_t peerAddress[6];
uint8_t peerIRK[16];
uint8_t localIRK[16];
} addDevice;
addDevice.peerAddressType = addressType;
for(int i=0; i<6; i++) addDevice.peerAddress[5-i] = peerAddress[i];
for(int i=0; i<16; i++) {
addDevice.peerIRK[15-i] = peerIrk[i];
addDevice.localIRK[15-i] = localIrk[i];
}
Serial.print("ADDTYPE :");
btct.printBytes(&addDevice.peerAddressType,1);
Serial.print("adddddd :");
btct.printBytes(addDevice.peerAddress,6);
Serial.print("Peer IRK :");
btct.printBytes(addDevice.peerIRK,16);
Serial.print("localIRK :");
btct.printBytes(addDevice.localIRK,16);
sendCommand(OGF_LE_CTL << 10 | 0x27, sizeof(addDevice), &addDevice);
leStartResolvingAddresses();
}
int HCIClass::leStopResolvingAddresses(){
uint8_t enable = 0;
return HCI.sendCommand(OGF_LE_CTL << 10 | 0x2D, 1,&enable); // Disable address resolution
}
int HCIClass::leStartResolvingAddresses(){
uint8_t enable = 1;
return HCI.sendCommand(OGF_LE_CTL << 10 | 0x2D, 1,&enable); // Disable address resolution
}
int HCIClass::leReadPeerResolvableAddress(uint8_t peerAddressType, uint8_t* peerIdentityAddress, uint8_t* peerResolvableAddress){
struct __attribute__ ((packed)) Request {
uint8_t addressType;
uint8_t identityAddress[6];
} request;
request.addressType = peerAddressType;
for(int i=0; i<6; i++) request.identityAddress[5-i] = peerIdentityAddress[i];
int res = sendCommand(OGF_LE_CTL << 10 | 0x2B, sizeof(request), &request);
Serial.print("res: 0x");
Serial.println(res, HEX);
if(res==0){
struct __attribute__ ((packed)) Response {
uint8_t status;
uint8_t peerResolvableAddress[6];
} *response = (Response*)_cmdResponse;
Serial.print("Address resolution status: 0x");
Serial.println(response->status, HEX);
Serial.print("peer resolvable address: ");
btct.printBytes(response->peerResolvableAddress,6);
}
return res;
}
void HCIClass::writeLK(uint8_t peerAddress[], uint8_t LK[]){
struct __attribute__ ((packed)) StoreLK {
uint8_t nKeys;
uint8_t BD_ADDR[6];
uint8_t LTK[16];
} storeLK;
storeLK.nKeys = 1;
memcpy(storeLK.BD_ADDR, peerAddress, 6);
for(int i=0; i<16; i++) storeLK.LTK[15-i] = LK[i];
HCI.sendCommand(OGF_HOST_CTL << 10 | 0x11, sizeof(storeLK), &storeLK);
}
void HCIClass::readStoredLKs(){
uint8_t BD_ADDR[6];
readStoredLK(BD_ADDR, 1);
}
int HCIClass::readStoredLK(uint8_t BD_ADDR[], uint8_t read_all ){
struct __attribute__ ((packed)) Request {
uint8_t BD_ADDR[6];
uint8_t read_a;
} request = {0,0};
for(int i=0; i<6; i++) request.BD_ADDR[5-i] = BD_ADDR[i];
request.read_a = read_all;
return sendCommand(OGF_HOST_CTL << 10 | 0xD, sizeof(request), &request);
}
int HCIClass::tryResolveAddress(uint8_t* BDAddr, uint8_t* address){
bool foundMatch = false;
if(HCI._getIRKs!=0){
uint8_t nIRKs = 0;
uint8_t** BDAddrType = new uint8_t*;
uint8_t*** BADDRs = new uint8_t**;
uint8_t*** IRKs = new uint8_t**;
if(!HCI._getIRKs(&nIRKs, BDAddrType, BADDRs, IRKs)){
Serial.println("error getting IRKs.");
}
for(int i=0; i<nIRKs; i++){
if(!foundMatch){
#ifdef _BLE_TRACE_
Serial.print("BDAddr type: : 0x");
Serial.println((*BDAddrType)[i],HEX);
Serial.print("BDAddr : ");
btct.printBytes((*BADDRs)[i],6);
Serial.print("IRK : ");
btct.printBytes((*IRKs)[i],16);
#endif
uint8_t hashresult[3];
btct.ah((*IRKs)[i], BDAddr, hashresult);
#ifdef _BLE_TRACE_
Serial.print("hash match : ");
btct.printBytes(hashresult,3);
Serial.print(" : ");
btct.printBytes(&BDAddr[3],3);
#endif
for(int k=0; k<3; k++){
if(hashresult[k] == BDAddr[3 + k]){
foundMatch = true;
}else{
foundMatch = false;
break;
}
}
if(foundMatch){
memcpy(address, (*BADDRs)[i],6);
}
}
delete[] (*BADDRs)[i];
delete[] (*IRKs)[i];
}
delete[] (*BDAddrType);
delete BDAddrType;
delete[] (*BADDRs);
delete BADDRs;
delete[] (*IRKs);
delete IRKs;
if(foundMatch){
return 1;
}
}
return 0;
}
int HCIClass::sendAclPkt(uint16_t handle, uint8_t cid, uint8_t plen, void* data)
{
while (_pendingPkt >= _maxPkt) {
poll();
}
struct __attribute__ ((packed)) HCIACLHdr {
uint8_t pktType;
uint16_t handle;
uint16_t dlen;
uint16_t plen;
uint16_t cid;
} aclHdr = { HCI_ACLDATA_PKT, handle, uint8_t(plen + 4), plen, cid };
uint8_t txBuffer[sizeof(aclHdr) + plen];
memcpy(txBuffer, &aclHdr, sizeof(aclHdr));
memcpy(&txBuffer[sizeof(aclHdr)], data, plen);
if (_debug) {
dumpPkt("HCI ACLDATA TX -> ", sizeof(aclHdr) + plen, txBuffer);
}
#ifdef _BLE_TRACE_
Serial.print("Data tx -> ");
for(int i=0; i< sizeof(aclHdr) + plen;i++){
Serial.print(" 0x");
Serial.print(txBuffer[i],HEX);
}
Serial.println(".");
#endif
_pendingPkt++;
HCITransport.write(txBuffer, sizeof(aclHdr) + plen);
return 0;
}
int HCIClass::disconnect(uint16_t handle)
{
struct __attribute__ ((packed)) HCIDisconnectData {
uint16_t handle;
uint8_t reason;
} disconnectData = { handle, HCI_OE_USER_ENDED_CONNECTION };
return sendCommand(OGF_LINK_CTL << 10 | OCF_DISCONNECT, sizeof(disconnectData), &disconnectData);
}
void HCIClass::debug(Stream& stream)
{
_debug = &stream;
}
void HCIClass::noDebug()
{
_debug = NULL;
}
int HCIClass::sendCommand(uint16_t opcode, uint8_t plen, void* parameters)
{
struct __attribute__ ((packed)) {
uint8_t pktType;
uint16_t opcode;
uint8_t plen;
} pktHdr = {HCI_COMMAND_PKT, opcode, plen};
uint8_t txBuffer[sizeof(pktHdr) + plen];
memcpy(txBuffer, &pktHdr, sizeof(pktHdr));
memcpy(&txBuffer[sizeof(pktHdr)], parameters, plen);
if (_debug) {
dumpPkt("HCI COMMAND TX -> ", sizeof(pktHdr) + plen, txBuffer);
}
#ifdef _BLE_TRACE_
Serial.print("Command tx -> ");
for(int i=0; i< sizeof(pktHdr) + plen;i++){
Serial.print(" 0x");
Serial.print(txBuffer[i],HEX);
}
Serial.println("");
#endif
HCITransport.write(txBuffer, sizeof(pktHdr) + plen);
_cmdCompleteOpcode = 0xffff;
_cmdCompleteStatus = -1;
for (unsigned long start = millis(); _cmdCompleteOpcode != opcode && millis() < (start + 1000);) {
poll();
}
return _cmdCompleteStatus;
}
void HCIClass::handleAclDataPkt(uint8_t /*plen*/, uint8_t pdata[])
{
struct __attribute__ ((packed)) HCIACLHdr {
uint16_t handle;
uint16_t dlen;
uint16_t len;
uint16_t cid;
} *aclHdr = (HCIACLHdr*)pdata;
uint16_t aclFlags = (aclHdr->handle & 0xf000) >> 12;
if ((aclHdr->dlen - 4) != aclHdr->len) {
// packet is fragmented
if (aclFlags != 0x01) {
// copy into ACL buffer
memcpy(_aclPktBuffer, &_recvBuffer[1], sizeof(HCIACLHdr) + aclHdr->dlen - 4);
} else {
// copy next chunk into the buffer
HCIACLHdr* aclBufferHeader = (HCIACLHdr*)_aclPktBuffer;
memcpy(&_aclPktBuffer[sizeof(HCIACLHdr) + aclBufferHeader->dlen - 4], &_recvBuffer[1 + sizeof(aclHdr->handle) + sizeof(aclHdr->dlen)], aclHdr->dlen);
aclBufferHeader->dlen += aclHdr->dlen;
aclHdr = aclBufferHeader;
}
}
if ((aclHdr->dlen - 4) != aclHdr->len) {
#ifdef _BLE_TRACE_
Serial.println("Don't have full packet yet");
Serial.print("Handle: ");
btct.printBytes((uint8_t*)&aclHdr->handle,2);
Serial.print("dlen: ");
btct.printBytes((uint8_t*)&aclHdr->dlen,2);
Serial.print("len: ");
btct.printBytes((uint8_t*)&aclHdr->len,2);
Serial.print("cid: ");
btct.printBytes((uint8_t*)&aclHdr->cid,2);
#endif
// don't have the full packet yet
return;
}
if (aclHdr->cid == ATT_CID) {
if (aclFlags == 0x01) {
// use buffered packet
ATT.handleData(aclHdr->handle & 0x0fff, aclHdr->len, &_aclPktBuffer[sizeof(HCIACLHdr)]);
} else {
// use the recv buffer
ATT.handleData(aclHdr->handle & 0x0fff, aclHdr->len, &_recvBuffer[1 + sizeof(HCIACLHdr)]);
}
} else if (aclHdr->cid == SIGNALING_CID) {
#ifdef _BLE_TRACE_
Serial.println("Signaling");
#endif
L2CAPSignaling.handleData(aclHdr->handle & 0x0fff, aclHdr->len, &_recvBuffer[1 + sizeof(HCIACLHdr)]);
} else if (aclHdr->cid == SECURITY_CID){
// Security manager
#ifdef _BLE_TRACE_
Serial.println("Security data");
#endif
if (aclFlags == 0x1){
L2CAPSignaling.handleSecurityData(aclHdr->handle & 0x0fff, aclHdr->len, &_aclPktBuffer[sizeof(HCIACLHdr)]);
}else{
L2CAPSignaling.handleSecurityData(aclHdr->handle & 0x0fff, aclHdr->len, &_recvBuffer[1 + sizeof(HCIACLHdr)]);
}
}else {
struct __attribute__ ((packed)) {
uint8_t op;
uint8_t id;
uint16_t length;
uint16_t reason;
uint16_t localCid;
uint16_t remoteCid;
} l2capRejectCid= { 0x01, 0x00, 0x006, 0x0002, aclHdr->cid, 0x0000 };
#ifdef _BLE_TRACE_
Serial.print("rejecting packet cid: 0x");
Serial.println(aclHdr->cid,HEX);
#endif
sendAclPkt(aclHdr->handle & 0x0fff, 0x0005, sizeof(l2capRejectCid), &l2capRejectCid);
}
}
void HCIClass::handleNumCompPkts(uint16_t /*handle*/, uint16_t numPkts)
{
if (numPkts && _pendingPkt > numPkts) {
_pendingPkt -= numPkts;
} else {
_pendingPkt = 0;
}
}
void HCIClass::handleEventPkt(uint8_t /*plen*/, uint8_t pdata[])
{
struct __attribute__ ((packed)) HCIEventHdr {
uint8_t evt;
uint8_t plen;
} *eventHdr = (HCIEventHdr*)pdata;
#ifdef _BLE_TRACE_
Serial.print("HCI event: ");
Serial.println(eventHdr->evt, HEX);
#endif
if (eventHdr->evt == EVT_DISCONN_COMPLETE)
{
struct __attribute__ ((packed)) DisconnComplete {
uint8_t status;
uint16_t handle;
uint8_t reason;
} *disconnComplete = (DisconnComplete*)&pdata[sizeof(HCIEventHdr)];
ATT.removeConnection(disconnComplete->handle, disconnComplete->reason);
L2CAPSignaling.removeConnection(disconnComplete->handle, disconnComplete->reason);
HCI.leSetAdvertiseEnable(0x01);
}
else if (eventHdr->evt == EVT_ENCRYPTION_CHANGE)
{
struct __attribute__ ((packed)) EncryptionChange {
uint8_t status;
uint16_t connectionHandle;
uint8_t enabled;
} *encryptionChange = (EncryptionChange*)&pdata[sizeof(HCIEventHdr)];
#ifdef _BLE_TRACE_
Serial.println("[Info] Encryption changed");
Serial.print("status : ");
btct.printBytes(&encryptionChange->status,1);
Serial.print("handle : ");
btct.printBytes((uint8_t*)&encryptionChange->connectionHandle,2);
Serial.print("enabled: ");
btct.printBytes(&encryptionChange->enabled,1);
#endif
if(encryptionChange->enabled>0){
// 0001 1110
if((ATT.getPeerEncryption(encryptionChange->connectionHandle)&PEER_ENCRYPTION::PAIRING_REQUEST)>0){
if(ATT.localKeyDistribution.EncKey()){
#ifdef _BLE_TRACE_
Serial.println("Enc key set but should be ignored");
#endif
}else{
#ifdef _BLE_TRACE_
Serial.println("No enc key distribution");
#endif
}
// From page 1681 bluetooth standard - order matters
if(ATT.localKeyDistribution.IdKey()){
/// We shall distribute IRK and address using identity information
{
uint8_t response[17];
response[0] = CONNECTION_IDENTITY_INFORMATION; // Identity information.
for(int i=0; i<16; i++) response[16-i] = ATT.localIRK[i];
HCI.sendAclPkt(encryptionChange->connectionHandle, SECURITY_CID, sizeof(response), response);
#ifdef _BLE_TRACE_
Serial.println("Distribute ID Key");
#endif
}
{
uint8_t response[8];
response[0] = CONNECTION_IDENTITY_ADDRESS; // Identity address information
response[1] = 0x00; // Static local address
for(int i=0; i<6; i++) response[7-i] = HCI.localAddr[i];
HCI.sendAclPkt(encryptionChange->connectionHandle, SECURITY_CID, sizeof(response), response);
}
}
if(ATT.localKeyDistribution.SignKey()){
/// We shall distribut CSRK
#ifdef _BLE_TRACE_
Serial.println("We shall distribute CSRK // not implemented");
#endif
}else{
// Serial.println("We don't want to distribute CSRK");
}
if(ATT.localKeyDistribution.LinkKey()){
#ifdef _BLE_TRACE_
Serial.println("We would like to use LTK to generate BR/EDR // not implemented");
#endif
}
}else{
#ifdef _BLE_TRACE_
Serial.println("Reconnection, not pairing so no keys");
Serial.println(ATT.getPeerEncryption(encryptionChange->connectionHandle),HEX);
#endif
}
ATT.setPeerEncryption(encryptionChange->connectionHandle, PEER_ENCRYPTION::ENCRYPTED_AES);
if(ATT.writeBufferSize > 0){
ATT.processWriteBuffer();
}
if(ATT.holdBufferSize>0){
#ifdef _BLE_TRACE_
Serial.print("Sending queued response size: ");
Serial.println(ATT.holdBufferSize);
#endif
HCI.sendAclPkt(encryptionChange->connectionHandle, ATT_CID, ATT.holdBufferSize, ATT.holdBuffer);
ATT.holdBufferSize = 0;
}
}else{
ATT.setPeerEncryption(encryptionChange->connectionHandle, PEER_ENCRYPTION::NO_ENCRYPTION);
}
}
else if (eventHdr->evt == EVT_CMD_COMPLETE)
{
struct __attribute__ ((packed)) CmdComplete {
uint8_t ncmd;
uint16_t opcode;
uint8_t status;
} *cmdCompleteHeader = (CmdComplete*)&pdata[sizeof(HCIEventHdr)];
#ifdef _BLE_TRACE_
Serial.print("E ncmd: 0x");
Serial.println(cmdCompleteHeader->ncmd,HEX);
Serial.print("E opcode: 0x");
Serial.println(cmdCompleteHeader->opcode, HEX);
Serial.print("E status: 0x");
Serial.println(cmdCompleteHeader->status, HEX);
#endif
_cmdCompleteOpcode = cmdCompleteHeader->opcode;
_cmdCompleteStatus = cmdCompleteHeader->status;
_cmdResponseLen = pdata[1] - sizeof(CmdComplete);
_cmdResponse = &pdata[sizeof(HCIEventHdr) + sizeof(CmdComplete)];
}
else if (eventHdr->evt == EVT_CMD_STATUS)
{
struct __attribute__ ((packed)) CmdStatus {
uint8_t status;
uint8_t ncmd;
uint16_t opcode;
} *cmdStatusHeader = (CmdStatus*)&pdata[sizeof(HCIEventHdr)];
#ifdef _BLE_TRACE_
Serial.print("F n cmd: 0x");
Serial.println(cmdStatusHeader->ncmd, HEX);
Serial.print("F status: 0x");
Serial.println(cmdStatusHeader->status, HEX);
Serial.print("F opcode: 0x");
Serial.println(cmdStatusHeader->opcode, HEX);
#endif
_cmdCompleteOpcode = cmdStatusHeader->opcode;
_cmdCompleteStatus = cmdStatusHeader->status;
_cmdResponseLen = 0;
}
else if (eventHdr->evt == EVT_NUM_COMP_PKTS)
{
uint8_t numHandles = pdata[sizeof(HCIEventHdr)];
uint16_t* data = (uint16_t*)&pdata[sizeof(HCIEventHdr) + sizeof(numHandles)];
for (uint8_t i = 0; i < numHandles; i++) {
handleNumCompPkts(data[0], data[1]);
#ifdef _BLE_TRACE_
Serial.print("Outstanding packets: ");
Serial.println(_pendingPkt);
Serial.print("Data[0]: 0x");
Serial.println(data[0]);
Serial.print("Data[1]: 0x");
Serial.println(data[1]);
#endif
data += 2;
}
}
else if(eventHdr->evt == 0x10)
{
#ifdef _BLE_TRACE_
struct __attribute__ ((packed)) CmdHardwareError {
uint8_t hardwareCode;
} *cmdHardwareError = (CmdHardwareError*)&pdata[sizeof(HCIEventHdr)];
Serial.print("Bluetooth hardware error.");
Serial.print(" Code: 0x");
Serial.println(cmdHardwareError->hardwareCode, HEX);
#endif
}
else if (eventHdr->evt == EVT_LE_META_EVENT)
{
struct __attribute__ ((packed)) LeMetaEventHeader {
uint8_t subevent;
} *leMetaHeader = (LeMetaEventHeader*)&pdata[sizeof(HCIEventHdr)];
#ifdef _BLE_TRACE_
Serial.print("\tSubEvent: 0x");
Serial.println(leMetaHeader->subevent,HEX);
#endif
switch((LE_META_EVENT)leMetaHeader->subevent){
case 0x0A:{
struct __attribute__ ((packed)) EvtLeConnectionComplete {
uint8_t status;
uint16_t handle;
uint8_t role;
uint8_t peerBdaddrType;
uint8_t peerBdaddr[6];
uint8_t localResolvablePrivateAddress[6];
uint8_t peerResolvablePrivateAddress[6];
uint16_t interval;
uint16_t latency;