forked from rust-lang/rust
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patherror_reporting.rs
614 lines (573 loc) · 26.9 KB
/
error_reporting.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use super::{
FulfillmentError,
FulfillmentErrorCode,
MismatchedProjectionTypes,
Obligation,
ObligationCauseCode,
OutputTypeParameterMismatch,
TraitNotObjectSafe,
PredicateObligation,
SelectionError,
ObjectSafetyViolation,
MethodViolationCode,
object_safety_violations,
};
use fmt_macros::{Parser, Piece, Position};
use middle::def_id::DefId;
use middle::infer::InferCtxt;
use middle::ty::{self, ToPredicate, HasTypeFlags, ToPolyTraitRef, TraitRef, Ty};
use middle::ty::fold::TypeFoldable;
use util::nodemap::{FnvHashMap, FnvHashSet};
use std::fmt;
use syntax::codemap::Span;
use syntax::attr::{AttributeMethods, AttrMetaMethods};
#[derive(Debug, PartialEq, Eq, Hash)]
pub struct TraitErrorKey<'tcx> {
is_warning: bool,
span: Span,
predicate: ty::Predicate<'tcx>
}
impl<'tcx> TraitErrorKey<'tcx> {
fn from_error<'a>(infcx: &InferCtxt<'a, 'tcx>,
e: &FulfillmentError<'tcx>) -> Self {
let predicate =
infcx.resolve_type_vars_if_possible(&e.obligation.predicate);
TraitErrorKey {
is_warning: is_warning(&e.obligation),
span: e.obligation.cause.span,
predicate: infcx.tcx.erase_regions(&predicate)
}
}
}
pub fn report_fulfillment_errors<'a, 'tcx>(infcx: &InferCtxt<'a, 'tcx>,
errors: &Vec<FulfillmentError<'tcx>>) {
for error in errors {
report_fulfillment_error(infcx, error);
}
}
fn report_fulfillment_error<'a, 'tcx>(infcx: &InferCtxt<'a, 'tcx>,
error: &FulfillmentError<'tcx>) {
let error_key = TraitErrorKey::from_error(infcx, error);
debug!("report_fulfillment_errors({:?}) - key={:?}",
error, error_key);
if !infcx.reported_trait_errors.borrow_mut().insert(error_key) {
debug!("report_fulfillment_errors: skipping duplicate");
return;
}
match error.code {
FulfillmentErrorCode::CodeSelectionError(ref e) => {
report_selection_error(infcx, &error.obligation, e);
}
FulfillmentErrorCode::CodeProjectionError(ref e) => {
report_projection_error(infcx, &error.obligation, e);
}
FulfillmentErrorCode::CodeAmbiguity => {
maybe_report_ambiguity(infcx, &error.obligation);
}
}
}
fn is_warning<T>(obligation: &Obligation<T>) -> bool {
obligation.cause.code.is_rfc1214()
}
pub fn report_projection_error<'a, 'tcx>(infcx: &InferCtxt<'a, 'tcx>,
obligation: &PredicateObligation<'tcx>,
error: &MismatchedProjectionTypes<'tcx>)
{
let predicate =
infcx.resolve_type_vars_if_possible(&obligation.predicate);
// The TyError created by normalize_to_error can end up being unified
// into all obligations: for example, if our obligation is something
// like `$X = <() as Foo<$X>>::Out` and () does not implement Foo<_>,
// then $X will be unified with TyError, but the error still needs to be
// reported.
if !infcx.tcx.sess.has_errors() || !predicate.references_error() {
span_err_or_warn!(
is_warning(obligation), infcx.tcx.sess, obligation.cause.span, E0271,
"type mismatch resolving `{}`: {}",
predicate,
error.err);
note_obligation_cause(infcx, obligation);
}
}
fn report_on_unimplemented<'a, 'tcx>(infcx: &InferCtxt<'a, 'tcx>,
trait_ref: &TraitRef<'tcx>,
span: Span) -> Option<String> {
let def_id = trait_ref.def_id;
let mut report = None;
for item in infcx.tcx.get_attrs(def_id).iter() {
if item.check_name("rustc_on_unimplemented") {
let err_sp = item.meta().span.substitute_dummy(span);
let def = infcx.tcx.lookup_trait_def(def_id);
let trait_str = def.trait_ref.to_string();
if let Some(ref istring) = item.value_str() {
let mut generic_map = def.generics.types.iter_enumerated()
.map(|(param, i, gen)| {
(gen.name.as_str().to_string(),
trait_ref.substs.types.get(param, i)
.to_string())
}).collect::<FnvHashMap<String, String>>();
generic_map.insert("Self".to_string(),
trait_ref.self_ty().to_string());
let parser = Parser::new(&istring);
let mut errored = false;
let err: String = parser.filter_map(|p| {
match p {
Piece::String(s) => Some(s),
Piece::NextArgument(a) => match a.position {
Position::ArgumentNamed(s) => match generic_map.get(s) {
Some(val) => Some(val),
None => {
span_err!(infcx.tcx.sess, err_sp, E0272,
"the #[rustc_on_unimplemented] \
attribute on \
trait definition for {} refers to \
non-existent type parameter {}",
trait_str, s);
errored = true;
None
}
},
_ => {
span_err!(infcx.tcx.sess, err_sp, E0273,
"the #[rustc_on_unimplemented] \
attribute on \
trait definition for {} must have named \
format arguments, \
eg `#[rustc_on_unimplemented = \
\"foo {{T}}\"]`",
trait_str);
errored = true;
None
}
}
}
}).collect();
// Report only if the format string checks out
if !errored {
report = Some(err);
}
} else {
span_err!(infcx.tcx.sess, err_sp, E0274,
"the #[rustc_on_unimplemented] attribute on \
trait definition for {} must have a value, \
eg `#[rustc_on_unimplemented = \"foo\"]`",
trait_str);
}
break;
}
}
report
}
/// Reports that an overflow has occurred and halts compilation. We
/// halt compilation unconditionally because it is important that
/// overflows never be masked -- they basically represent computations
/// whose result could not be truly determined and thus we can't say
/// if the program type checks or not -- and they are unusual
/// occurrences in any case.
pub fn report_overflow_error<'a, 'tcx, T>(infcx: &InferCtxt<'a, 'tcx>,
obligation: &Obligation<'tcx, T>)
-> !
where T: fmt::Display + TypeFoldable<'tcx> + HasTypeFlags
{
let predicate =
infcx.resolve_type_vars_if_possible(&obligation.predicate);
span_err!(infcx.tcx.sess, obligation.cause.span, E0275,
"overflow evaluating the requirement `{}`",
predicate);
suggest_new_overflow_limit(infcx.tcx, obligation.cause.span);
note_obligation_cause(infcx, obligation);
infcx.tcx.sess.abort_if_errors();
unreachable!();
}
pub fn report_selection_error<'a, 'tcx>(infcx: &InferCtxt<'a, 'tcx>,
obligation: &PredicateObligation<'tcx>,
error: &SelectionError<'tcx>)
{
let is_warning = is_warning(obligation);
match *error {
SelectionError::Unimplemented => {
if let ObligationCauseCode::CompareImplMethodObligation = obligation.cause.code {
span_err_or_warn!(
is_warning, infcx.tcx.sess, obligation.cause.span, E0276,
"the requirement `{}` appears on the impl \
method but not on the corresponding trait method",
obligation.predicate);;
} else {
match obligation.predicate {
ty::Predicate::Trait(ref trait_predicate) => {
let trait_predicate =
infcx.resolve_type_vars_if_possible(trait_predicate);
if !infcx.tcx.sess.has_errors() || !trait_predicate.references_error() {
let trait_ref = trait_predicate.to_poly_trait_ref();
span_err_or_warn!(
is_warning, infcx.tcx.sess, obligation.cause.span, E0277,
"the trait `{}` is not implemented for the type `{}`",
trait_ref, trait_ref.self_ty());
// Check if it has a custom "#[rustc_on_unimplemented]"
// error message, report with that message if it does
let custom_note = report_on_unimplemented(infcx, &trait_ref.0,
obligation.cause.span);
if let Some(s) = custom_note {
infcx.tcx.sess.fileline_note(obligation.cause.span, &s);
}
note_obligation_cause(infcx, obligation);
}
}
ty::Predicate::Equate(ref predicate) => {
let predicate = infcx.resolve_type_vars_if_possible(predicate);
let err = infcx.equality_predicate(obligation.cause.span,
&predicate).err().unwrap();
span_err_or_warn!(
is_warning, infcx.tcx.sess, obligation.cause.span, E0278,
"the requirement `{}` is not satisfied (`{}`)",
predicate,
err);
note_obligation_cause(infcx, obligation);
}
ty::Predicate::RegionOutlives(ref predicate) => {
let predicate = infcx.resolve_type_vars_if_possible(predicate);
let err = infcx.region_outlives_predicate(obligation.cause.span,
&predicate).err().unwrap();
span_err_or_warn!(
is_warning, infcx.tcx.sess, obligation.cause.span, E0279,
"the requirement `{}` is not satisfied (`{}`)",
predicate,
err);
note_obligation_cause(infcx, obligation);
}
ty::Predicate::Projection(..) | ty::Predicate::TypeOutlives(..) => {
let predicate =
infcx.resolve_type_vars_if_possible(&obligation.predicate);
span_err_or_warn!(
is_warning, infcx.tcx.sess, obligation.cause.span, E0280,
"the requirement `{}` is not satisfied",
predicate);
note_obligation_cause(infcx, obligation);
}
ty::Predicate::ObjectSafe(trait_def_id) => {
let violations = object_safety_violations(
infcx.tcx, trait_def_id);
report_object_safety_error(infcx.tcx,
obligation.cause.span,
trait_def_id,
violations,
is_warning);
note_obligation_cause(infcx, obligation);
}
ty::Predicate::WellFormed(ty) => {
// WF predicates cannot themselves make
// errors. They can only block due to
// ambiguity; otherwise, they always
// degenerate into other obligations
// (which may fail).
infcx.tcx.sess.span_bug(
obligation.cause.span,
&format!("WF predicate not satisfied for {:?}", ty));
}
}
}
}
OutputTypeParameterMismatch(ref expected_trait_ref, ref actual_trait_ref, ref e) => {
let expected_trait_ref = infcx.resolve_type_vars_if_possible(&*expected_trait_ref);
let actual_trait_ref = infcx.resolve_type_vars_if_possible(&*actual_trait_ref);
if !actual_trait_ref.self_ty().references_error() {
span_err_or_warn!(
is_warning, infcx.tcx.sess, obligation.cause.span, E0281,
"type mismatch: the type `{}` implements the trait `{}`, \
but the trait `{}` is required ({})",
expected_trait_ref.self_ty(),
expected_trait_ref,
actual_trait_ref,
e);
note_obligation_cause(infcx, obligation);
}
}
TraitNotObjectSafe(did) => {
let violations = object_safety_violations(infcx.tcx, did);
report_object_safety_error(infcx.tcx, obligation.cause.span, did,
violations, is_warning);
note_obligation_cause(infcx, obligation);
}
}
}
pub fn report_object_safety_error<'tcx>(tcx: &ty::ctxt<'tcx>,
span: Span,
trait_def_id: DefId,
violations: Vec<ObjectSafetyViolation>,
is_warning: bool)
{
span_err_or_warn!(
is_warning, tcx.sess, span, E0038,
"the trait `{}` cannot be made into an object",
tcx.item_path_str(trait_def_id));
let mut reported_violations = FnvHashSet();
for violation in violations {
if !reported_violations.insert(violation.clone()) {
continue;
}
match violation {
ObjectSafetyViolation::SizedSelf => {
tcx.sess.fileline_note(
span,
"the trait cannot require that `Self : Sized`");
}
ObjectSafetyViolation::SupertraitSelf => {
tcx.sess.fileline_note(
span,
"the trait cannot use `Self` as a type parameter \
in the supertrait listing");
}
ObjectSafetyViolation::Method(method,
MethodViolationCode::StaticMethod) => {
tcx.sess.fileline_note(
span,
&format!("method `{}` has no receiver",
method.name));
}
ObjectSafetyViolation::Method(method,
MethodViolationCode::ReferencesSelf) => {
tcx.sess.fileline_note(
span,
&format!("method `{}` references the `Self` type \
in its arguments or return type",
method.name));
}
ObjectSafetyViolation::Method(method,
MethodViolationCode::Generic) => {
tcx.sess.fileline_note(
span,
&format!("method `{}` has generic type parameters",
method.name));
}
}
}
}
pub fn maybe_report_ambiguity<'a, 'tcx>(infcx: &InferCtxt<'a, 'tcx>,
obligation: &PredicateObligation<'tcx>) {
// Unable to successfully determine, probably means
// insufficient type information, but could mean
// ambiguous impls. The latter *ought* to be a
// coherence violation, so we don't report it here.
let predicate = infcx.resolve_type_vars_if_possible(&obligation.predicate);
debug!("maybe_report_ambiguity(predicate={:?}, obligation={:?})",
predicate,
obligation);
match predicate {
ty::Predicate::Trait(ref data) => {
let trait_ref = data.to_poly_trait_ref();
let self_ty = trait_ref.self_ty();
let all_types = &trait_ref.substs().types;
if all_types.references_error() {
} else if all_types.needs_infer() {
// This is kind of a hack: it frequently happens that some earlier
// error prevents types from being fully inferred, and then we get
// a bunch of uninteresting errors saying something like "<generic
// #0> doesn't implement Sized". It may even be true that we
// could just skip over all checks where the self-ty is an
// inference variable, but I was afraid that there might be an
// inference variable created, registered as an obligation, and
// then never forced by writeback, and hence by skipping here we'd
// be ignoring the fact that we don't KNOW the type works
// out. Though even that would probably be harmless, given that
// we're only talking about builtin traits, which are known to be
// inhabited. But in any case I just threw in this check for
// has_errors() to be sure that compilation isn't happening
// anyway. In that case, why inundate the user.
if !infcx.tcx.sess.has_errors() {
if
infcx.tcx.lang_items.sized_trait()
.map_or(false, |sized_id| sized_id == trait_ref.def_id())
{
need_type_info(infcx, obligation.cause.span, self_ty);
} else {
span_err!(infcx.tcx.sess, obligation.cause.span, E0283,
"type annotations required: cannot resolve `{}`",
predicate);
note_obligation_cause(infcx, obligation);
}
}
} else if !infcx.tcx.sess.has_errors() {
// Ambiguity. Coherence should have reported an error.
infcx.tcx.sess.span_bug(
obligation.cause.span,
&format!(
"coherence failed to report ambiguity: \
cannot locate the impl of the trait `{}` for \
the type `{}`",
trait_ref,
self_ty));
}
}
ty::Predicate::WellFormed(ty) => {
// Same hacky approach as above to avoid deluging user
// with error messages.
if !ty.references_error() && !infcx.tcx.sess.has_errors() {
need_type_info(infcx, obligation.cause.span, ty);
}
}
_ => {
if !infcx.tcx.sess.has_errors() {
span_err!(infcx.tcx.sess, obligation.cause.span, E0284,
"type annotations required: cannot resolve `{}`",
predicate);;
note_obligation_cause(infcx, obligation);
}
}
}
}
fn need_type_info<'a, 'tcx>(infcx: &InferCtxt<'a, 'tcx>,
span: Span,
ty: Ty<'tcx>)
{
span_err!(infcx.tcx.sess, span, E0282,
"unable to infer enough type information about `{}`; \
type annotations or generic parameter binding required",
ty);
}
fn note_obligation_cause<'a, 'tcx, T>(infcx: &InferCtxt<'a, 'tcx>,
obligation: &Obligation<'tcx, T>)
where T: fmt::Display
{
note_obligation_cause_code(infcx,
&obligation.predicate,
obligation.cause.span,
&obligation.cause.code);
}
fn note_obligation_cause_code<'a, 'tcx, T>(infcx: &InferCtxt<'a, 'tcx>,
predicate: &T,
cause_span: Span,
cause_code: &ObligationCauseCode<'tcx>)
where T: fmt::Display
{
let tcx = infcx.tcx;
match *cause_code {
ObligationCauseCode::MiscObligation => { }
ObligationCauseCode::RFC1214(ref subcode) => {
tcx.sess.note_rfc_1214(cause_span);
note_obligation_cause_code(infcx, predicate, cause_span, subcode);
}
ObligationCauseCode::SliceOrArrayElem => {
tcx.sess.fileline_note(
cause_span,
&format!("slice and array elements must have `Sized` type"));
}
ObligationCauseCode::ProjectionWf(data) => {
tcx.sess.fileline_note(
cause_span,
&format!("required so that the projection `{}` is well-formed",
data));
}
ObligationCauseCode::ReferenceOutlivesReferent(ref_ty) => {
tcx.sess.fileline_note(
cause_span,
&format!("required so that reference `{}` does not outlive its referent",
ref_ty));
}
ObligationCauseCode::ItemObligation(item_def_id) => {
let item_name = tcx.item_path_str(item_def_id);
tcx.sess.fileline_note(
cause_span,
&format!("required by `{}`", item_name));
}
ObligationCauseCode::ObjectCastObligation(object_ty) => {
tcx.sess.fileline_note(
cause_span,
&format!(
"required for the cast to the object type `{}`",
infcx.ty_to_string(object_ty)));
}
ObligationCauseCode::RepeatVec => {
tcx.sess.fileline_note(
cause_span,
"the `Copy` trait is required because the \
repeated element will be copied");
}
ObligationCauseCode::VariableType(_) => {
tcx.sess.fileline_note(
cause_span,
"all local variables must have a statically known size");
}
ObligationCauseCode::ReturnType => {
tcx.sess.fileline_note(
cause_span,
"the return type of a function must have a \
statically known size");
}
ObligationCauseCode::AssignmentLhsSized => {
tcx.sess.fileline_note(
cause_span,
"the left-hand-side of an assignment must have a statically known size");
}
ObligationCauseCode::StructInitializerSized => {
tcx.sess.fileline_note(
cause_span,
"structs must have a statically known size to be initialized");
}
ObligationCauseCode::ClosureCapture(var_id, _, builtin_bound) => {
let def_id = tcx.lang_items.from_builtin_kind(builtin_bound).unwrap();
let trait_name = tcx.item_path_str(def_id);
let name = tcx.local_var_name_str(var_id);
tcx.sess.fileline_note(
cause_span,
&format!("the closure that captures `{}` requires that all captured variables \
implement the trait `{}`",
name,
trait_name));
}
ObligationCauseCode::FieldSized => {
tcx.sess.fileline_note(
cause_span,
"only the last field of a struct or enum variant \
may have a dynamically sized type");
}
ObligationCauseCode::SharedStatic => {
tcx.sess.fileline_note(
cause_span,
"shared static variables must have a type that implements `Sync`");
}
ObligationCauseCode::BuiltinDerivedObligation(ref data) => {
let parent_trait_ref = infcx.resolve_type_vars_if_possible(&data.parent_trait_ref);
tcx.sess.fileline_note(
cause_span,
&format!("required because it appears within the type `{}`",
parent_trait_ref.0.self_ty()));
let parent_predicate = parent_trait_ref.to_predicate();
note_obligation_cause_code(infcx, &parent_predicate, cause_span, &*data.parent_code);
}
ObligationCauseCode::ImplDerivedObligation(ref data) => {
let parent_trait_ref = infcx.resolve_type_vars_if_possible(&data.parent_trait_ref);
tcx.sess.fileline_note(
cause_span,
&format!("required because of the requirements on the impl of `{}` for `{}`",
parent_trait_ref,
parent_trait_ref.0.self_ty()));
let parent_predicate = parent_trait_ref.to_predicate();
note_obligation_cause_code(infcx, &parent_predicate, cause_span, &*data.parent_code);
}
ObligationCauseCode::CompareImplMethodObligation => {
tcx.sess.fileline_note(
cause_span,
&format!("the requirement `{}` appears on the impl method \
but not on the corresponding trait method",
predicate));
}
}
}
fn suggest_new_overflow_limit(tcx: &ty::ctxt, span: Span) {
let current_limit = tcx.sess.recursion_limit.get();
let suggested_limit = current_limit * 2;
tcx.sess.fileline_note(
span,
&format!(
"consider adding a `#![recursion_limit=\"{}\"]` attribute to your crate",
suggested_limit));
}