@@ -173,9 +173,7 @@ def test_default_configuration(self):
173
173
174
174
auto = SimpleClassificationPipeline (random_state = 1 )
175
175
176
- with ignore_warnings (classifier_warnings ):
177
- auto = auto .fit (X_train , Y_train )
178
-
176
+ auto = auto .fit (X_train , Y_train )
179
177
predictions = auto .predict (X_test )
180
178
181
179
acc = sklearn .metrics .accuracy_score (predictions , Y_test )
@@ -192,18 +190,13 @@ def test_default_configuration_multilabel(self):
192
190
"""
193
191
X_train , Y_train , X_test , Y_test = get_dataset (dataset = 'iris' , make_multilabel = True )
194
192
195
- classifier = SimpleClassificationPipeline (
196
- dataset_properties = {'multilabel' : True },
197
- random_state = 0
198
- )
193
+ classifier = SimpleClassificationPipeline (dataset_properties = {'multilabel' : True })
199
194
cs = classifier .get_hyperparameter_search_space ()
200
195
201
196
default = cs .get_default_configuration ()
202
197
classifier .set_hyperparameters (default )
203
198
204
- with ignore_warnings (classifier_warnings ):
205
- classifier = classifier .fit (X_train , Y_train )
206
-
199
+ classifier = classifier .fit (X_train , Y_train )
207
200
predictions = classifier .predict (X_test )
208
201
209
202
acc = sklearn .metrics .accuracy_score (predictions , Y_test )
@@ -228,12 +221,10 @@ def test_default_configuration_iterative_fit(self):
228
221
random_state = 0
229
222
)
230
223
classifier .fit_transformer (X_train , Y_train )
231
-
232
- with ignore_warnings (classifier_warnings ):
233
- for i in range (1 , 11 ):
234
- classifier .iterative_fit (X_train , Y_train )
235
- n_estimators = classifier .steps [- 1 ][- 1 ].choice .estimator .n_estimators
236
- self .assertEqual (n_estimators , i )
224
+ for i in range (1 , 11 ):
225
+ classifier .iterative_fit (X_train , Y_train )
226
+ n_estimators = classifier .steps [- 1 ][- 1 ].choice .estimator .n_estimators
227
+ self .assertEqual (n_estimators , i )
237
228
238
229
def test_repr (self ):
239
230
"""Test that the default pipeline can be converted to its representation and
@@ -736,9 +727,7 @@ def test_predict_batched(self):
736
727
737
728
# Multiclass
738
729
X_train , Y_train , X_test , Y_test = get_dataset (dataset = 'digits' )
739
-
740
- with ignore_warnings (classifier_warnings ):
741
- cls .fit (X_train , Y_train )
730
+ cls .fit (X_train , Y_train )
742
731
743
732
X_test_ = X_test .copy ()
744
733
prediction_ = cls .predict_proba (X_test_ )
@@ -770,8 +759,7 @@ def test_predict_batched_sparse(self):
770
759
771
760
# Multiclass
772
761
X_train , Y_train , X_test , Y_test = get_dataset (dataset = 'digits' , make_sparse = True )
773
- with ignore_warnings (classifier_warnings ):
774
- cls .fit (X_train , Y_train )
762
+ cls .fit (X_train , Y_train )
775
763
776
764
X_test_ = X_test .copy ()
777
765
prediction_ = cls .predict_proba (X_test_ )
@@ -800,8 +788,7 @@ def test_predict_proba_batched(self):
800
788
cls = SimpleClassificationPipeline (include = {'classifier' : ['sgd' ]})
801
789
X_train , Y_train , X_test , Y_test = get_dataset (dataset = 'digits' )
802
790
803
- with ignore_warnings (classifier_warnings ):
804
- cls .fit (X_train , Y_train )
791
+ cls .fit (X_train , Y_train )
805
792
806
793
X_test_ = X_test .copy ()
807
794
prediction_ = cls .predict_proba (X_test_ )
@@ -821,9 +808,7 @@ def test_predict_proba_batched(self):
821
808
X_train , Y_train , X_test , Y_test = get_dataset (dataset = 'digits' )
822
809
Y_train = np .array (list ([(list ([1 if i != y else 0 for i in range (10 )]))
823
810
for y in Y_train ]))
824
-
825
- with ignore_warnings (classifier_warnings ):
826
- cls .fit (X_train , Y_train )
811
+ cls .fit (X_train , Y_train )
827
812
828
813
X_test_ = X_test .copy ()
829
814
prediction_ = cls .predict_proba (X_test_ )
@@ -857,9 +842,7 @@ def test_predict_proba_batched_sparse(self):
857
842
X_train , Y_train , X_test , Y_test = get_dataset (dataset = 'digits' , make_sparse = True )
858
843
X_test_ = X_test .copy ()
859
844
860
- with ignore_warnings (classifier_warnings ):
861
- cls .fit (X_train , Y_train )
862
-
845
+ cls .fit (X_train , Y_train )
863
846
prediction_ = cls .predict_proba (X_test_ )
864
847
865
848
# The object behind the last step in the pipeline
@@ -878,13 +861,10 @@ def test_predict_proba_batched_sparse(self):
878
861
include = {'classifier' : ['lda' ]}
879
862
)
880
863
X_train , Y_train , X_test , Y_test = get_dataset (dataset = 'digits' , make_sparse = True )
881
-
882
864
X_test_ = X_test .copy ()
883
865
Y_train = np .array ([[1 if i != y else 0 for i in range (10 )] for y in Y_train ])
884
866
885
- with ignore_warnings (classifier_warnings ):
886
- cls .fit (X_train , Y_train )
887
-
867
+ cls .fit (X_train , Y_train )
888
868
prediction_ = cls .predict_proba (X_test_ )
889
869
890
870
# The object behind the last step in the pipeline
@@ -909,9 +889,7 @@ def test_pipeline_clonability(self):
909
889
X_train , Y_train , X_test , Y_test = get_dataset (dataset = 'iris' )
910
890
911
891
auto = SimpleClassificationPipeline ()
912
-
913
- with ignore_warnings (classifier_warnings ):
914
- auto = auto .fit (X_train , Y_train )
892
+ auto = auto .fit (X_train , Y_train )
915
893
916
894
auto_clone = clone (auto )
917
895
auto_clone_params = auto_clone .get_params ()
0 commit comments