@@ -93,6 +93,10 @@ Build and fit a regressor
93
93
94
94
.. code-block :: none
95
95
96
+ /home/runner/work/auto-sklearn/auto-sklearn/autosklearn/metalearning/metalearning/meta_base.py:68: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.
97
+ self.metafeatures = self.metafeatures.append(metafeatures)
98
+ /home/runner/work/auto-sklearn/auto-sklearn/autosklearn/metalearning/metalearning/meta_base.py:72: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.
99
+ self.algorithm_runs[metric].append(runs)
96
100
97
101
AutoSklearnRegressor(per_run_time_limit=30, time_left_for_this_task=120,
98
102
tmp_folder='/tmp/autosklearn_regression_example_tmp')
@@ -121,13 +125,13 @@ View the models found by auto-sklearn
121
125
122
126
.. code-block :: none
123
127
124
- rank ensemble_weight type cost duration
125
- model_id
126
- 25 1 0.46 sgd 0.436679 0.659050
127
- 6 2 0.32 ard_regression 0.455042 0.737850
128
- 27 3 0.14 ard_regression 0.462249 0.662217
129
- 11 4 0.02 random_forest 0.507400 8.655567
130
- 7 5 0.06 gradient_boosting 0.518673 1.330813
128
+ rank ensemble_weight type cost duration
129
+ model_id
130
+ 25 1 0.46 sgd 0.436679 0.704015
131
+ 6 2 0.32 ard_regression 0.455042 0.727717
132
+ 27 3 0.14 ard_regression 0.462249 0.708897
133
+ 11 4 0.02 random_forest 0.507400 10.913836
134
+ 7 5 0.06 gradient_boosting 0.518673 1.286970
131
135
132
136
133
137
@@ -155,58 +159,58 @@ Print the final ensemble constructed by auto-sklearn
155
159
.. code-block :: none
156
160
157
161
{ 6: { 'cost': 0.4550418898836528,
158
- 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f8e601bf400 >,
162
+ 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7facc1fcc760 >,
159
163
'ensemble_weight': 0.32,
160
- 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f8e5fba1bb0 >,
164
+ 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7facbc801a60 >,
161
165
'model_id': 6,
162
166
'rank': 2,
163
- 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f8e5fba15b0 >,
167
+ 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7facbc801fa0 >,
164
168
'sklearn_regressor': ARDRegression(alpha_1=0.0003701926442639788, alpha_2=2.2118001735899097e-07,
165
169
copy_X=False, lambda_1=1.2037591637980971e-06,
166
170
lambda_2=4.358378124977852e-09,
167
171
threshold_lambda=1136.5286041327277, tol=0.021944240404849075)},
168
172
7: { 'cost': 0.5186726734789994,
169
- 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f8e5fcafe50 >,
173
+ 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7facbe576ac0 >,
170
174
'ensemble_weight': 0.06,
171
- 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f8e60211910 >,
175
+ 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7facbe5630d0 >,
172
176
'model_id': 7,
173
177
'rank': 5,
174
- 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f8e60211f10 >,
178
+ 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7facbe563ee0 >,
175
179
'sklearn_regressor': HistGradientBoostingRegressor(l2_regularization=1.8428972335335263e-10,
176
180
learning_rate=0.012607824914758717, max_iter=512,
177
181
max_leaf_nodes=10, min_samples_leaf=8,
178
182
n_iter_no_change=0, random_state=1,
179
183
validation_fraction=None, warm_start=True)},
180
184
11: { 'cost': 0.5073997164657239,
181
- 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f8e645aa2b0 >,
185
+ 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7facd51ff5b0 >,
182
186
'ensemble_weight': 0.02,
183
- 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f8e60326190 >,
187
+ 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7facbd655df0 >,
184
188
'model_id': 11,
185
189
'rank': 4,
186
- 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f8e60326d00 >,
190
+ 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7facbd655d90 >,
187
191
'sklearn_regressor': RandomForestRegressor(bootstrap=False, criterion='mae',
188
192
max_features=0.6277363920171745, min_samples_leaf=6,
189
193
min_samples_split=15, n_estimators=512, n_jobs=1,
190
194
random_state=1, warm_start=True)},
191
195
25: { 'cost': 0.43667876507897496,
192
- 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f8e645aae50 >,
196
+ 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7facc1a38460 >,
193
197
'ensemble_weight': 0.46,
194
- 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f8e62ac6f40 >,
198
+ 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7facc1a38c40 >,
195
199
'model_id': 25,
196
200
'rank': 1,
197
- 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f8e62ac6940 >,
201
+ 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7facc1a38a90 >,
198
202
'sklearn_regressor': SGDRegressor(alpha=0.0006517033225329654, epsilon=0.012150149892783745,
199
203
eta0=0.016444224834275295, l1_ratio=1.7462342366289323e-09,
200
204
loss='epsilon_insensitive', max_iter=16, penalty='elasticnet',
201
205
power_t=0.21521743568582094, random_state=1,
202
206
tol=0.002431731981071206, warm_start=True)},
203
207
27: { 'cost': 0.4622486119001967,
204
- 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f8e601bf910 >,
208
+ 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7facc06870d0 >,
205
209
'ensemble_weight': 0.14,
206
- 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f8e602fadc0 >,
210
+ 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7facbee76a30 >,
207
211
'model_id': 27,
208
212
'rank': 3,
209
- 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f8e602fa6a0 >,
213
+ 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7facbee76580 >,
210
214
'sklearn_regressor': ARDRegression(alpha_1=2.7664515192592053e-05, alpha_2=9.504988116581138e-07,
211
215
copy_X=False, lambda_1=6.50650698230178e-09,
212
216
lambda_2=4.238533890074848e-07,
@@ -290,7 +294,7 @@ the true value).
290
294
291
295
.. rst-class :: sphx-glr-timing
292
296
293
- **Total running time of the script: ** ( 1 minutes 55.982 seconds)
297
+ **Total running time of the script: ** ( 1 minutes 56.083 seconds)
294
298
295
299
296
300
.. _sphx_glr_download_examples_20_basic_example_regression.py :
0 commit comments