Skip to content

Commit 8d1601b

Browse files
author
Github Actions
committed
Eddie Bergman: Fix: add error to be ignored during test (#1382)
1 parent a1c2fc7 commit 8d1601b

File tree

65 files changed

+2857
-2707
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

65 files changed

+2857
-2707
lines changed
Binary file not shown.
Binary file not shown.
Loading
Loading
Loading
Loading
Loading
Loading

development/_sources/examples/20_basic/example_classification.rst.txt

Lines changed: 253 additions & 194 deletions
Large diffs are not rendered by default.

development/_sources/examples/20_basic/example_multilabel_classification.rst.txt

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -155,7 +155,7 @@ View the models found by auto-sklearn
155155
156156
rank ensemble_weight type cost duration
157157
model_id
158-
2 1 1.0 random_forest 0.447294 3.954243
158+
2 1 1.0 random_forest 0.447294 3.783007
159159
160160
161161
@@ -183,11 +183,11 @@ Print the final ensemble constructed by auto-sklearn
183183
.. code-block:: none
184184
185185
{ 2: { 'balancing': Balancing(random_state=1),
186-
'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7f8e64679d60>,
186+
'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7facbcd12430>,
187187
'cost': 0.4472941828699525,
188-
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f8e5fb023d0>,
188+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7facbee85550>,
189189
'ensemble_weight': 1.0,
190-
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f8e646790a0>,
190+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7facbcd12580>,
191191
'model_id': 2,
192192
'rank': 1,
193193
'sklearn_classifier': RandomForestClassifier(max_features=15, n_estimators=512, n_jobs=1,
@@ -264,7 +264,7 @@ Get the Score of the final ensemble
264264
265265
.. rst-class:: sphx-glr-timing
266266

267-
**Total running time of the script:** ( 0 minutes 14.831 seconds)
267+
**Total running time of the script:** ( 0 minutes 12.302 seconds)
268268

269269

270270
.. _sphx_glr_download_examples_20_basic_example_multilabel_classification.py:

development/_sources/examples/20_basic/example_multioutput_regression.rst.txt

Lines changed: 26 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -123,9 +123,10 @@ View the models found by auto-sklearn
123123

124124
.. code-block:: none
125125
126-
rank ensemble_weight type cost duration
127-
model_id
128-
19 1 1.0 gaussian_process 2.891363e-08 5.137209
126+
rank ensemble_weight type cost duration
127+
model_id
128+
2 1 0.94 random_forest 0.144406 2.573841
129+
25 2 0.06 random_forest 0.341540 3.723741
129130
130131
131132
@@ -152,17 +153,26 @@ Print the final ensemble constructed by auto-sklearn
152153

153154
.. code-block:: none
154155
155-
{ 19: { 'cost': 2.891363148904702e-08,
156-
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f8e645b3b80>,
157-
'ensemble_weight': 1.0,
158-
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f8e5fa9f0d0>,
159-
'model_id': 19,
160-
'rank': 1,
161-
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f8e5fa9fbb0>,
162-
'sklearn_regressor': GaussianProcessRegressor(alpha=8.710120446620487e-12,
163-
kernel=RBF(length_scale=[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]),
164-
n_restarts_optimizer=10, normalize_y=True,
165-
random_state=1)}}
156+
{ 2: { 'cost': 0.14440599167790935,
157+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7facc1fcca30>,
158+
'ensemble_weight': 0.94,
159+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7facc1880eb0>,
160+
'model_id': 2,
161+
'rank': 1,
162+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7facc1880f40>,
163+
'sklearn_regressor': RandomForestRegressor(max_features=1.0, n_estimators=512, n_jobs=1,
164+
random_state=1, warm_start=True)},
165+
25: { 'cost': 0.34154027518036534,
166+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7facbe5d7610>,
167+
'ensemble_weight': 0.06,
168+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7facbc985f40>,
169+
'model_id': 25,
170+
'rank': 2,
171+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7facbc86ae80>,
172+
'sklearn_regressor': RandomForestRegressor(criterion='friedman_mse', max_features=0.929991924163003,
173+
min_samples_leaf=4, min_samples_split=18,
174+
n_estimators=512, n_jobs=1, random_state=1,
175+
warm_start=True)}}
166176
167177
168178
@@ -190,7 +200,7 @@ Get the Score of the final ensemble
190200

191201
.. code-block:: none
192202
193-
R2 score: 0.9999998075651403
203+
R2 score: 0.8681408622884761
194204
195205
196206
@@ -413,7 +423,7 @@ Get the configuration space
413423
414424
.. rst-class:: sphx-glr-timing
415425

416-
**Total running time of the script:** ( 1 minutes 57.283 seconds)
426+
**Total running time of the script:** ( 1 minutes 55.260 seconds)
417427

418428

419429
.. _sphx_glr_download_examples_20_basic_example_multioutput_regression.py:

development/_sources/examples/20_basic/example_regression.rst.txt

Lines changed: 27 additions & 23 deletions
Original file line numberDiff line numberDiff line change
@@ -93,6 +93,10 @@ Build and fit a regressor
9393

9494
.. code-block:: none
9595
96+
/home/runner/work/auto-sklearn/auto-sklearn/autosklearn/metalearning/metalearning/meta_base.py:68: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.
97+
self.metafeatures = self.metafeatures.append(metafeatures)
98+
/home/runner/work/auto-sklearn/auto-sklearn/autosklearn/metalearning/metalearning/meta_base.py:72: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.
99+
self.algorithm_runs[metric].append(runs)
96100
97101
AutoSklearnRegressor(per_run_time_limit=30, time_left_for_this_task=120,
98102
tmp_folder='/tmp/autosklearn_regression_example_tmp')
@@ -121,13 +125,13 @@ View the models found by auto-sklearn
121125

122126
.. code-block:: none
123127
124-
rank ensemble_weight type cost duration
125-
model_id
126-
25 1 0.46 sgd 0.436679 0.659050
127-
6 2 0.32 ard_regression 0.455042 0.737850
128-
27 3 0.14 ard_regression 0.462249 0.662217
129-
11 4 0.02 random_forest 0.507400 8.655567
130-
7 5 0.06 gradient_boosting 0.518673 1.330813
128+
rank ensemble_weight type cost duration
129+
model_id
130+
25 1 0.46 sgd 0.436679 0.704015
131+
6 2 0.32 ard_regression 0.455042 0.727717
132+
27 3 0.14 ard_regression 0.462249 0.708897
133+
11 4 0.02 random_forest 0.507400 10.913836
134+
7 5 0.06 gradient_boosting 0.518673 1.286970
131135
132136
133137
@@ -155,58 +159,58 @@ Print the final ensemble constructed by auto-sklearn
155159
.. code-block:: none
156160
157161
{ 6: { 'cost': 0.4550418898836528,
158-
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f8e601bf400>,
162+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7facc1fcc760>,
159163
'ensemble_weight': 0.32,
160-
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f8e5fba1bb0>,
164+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7facbc801a60>,
161165
'model_id': 6,
162166
'rank': 2,
163-
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f8e5fba15b0>,
167+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7facbc801fa0>,
164168
'sklearn_regressor': ARDRegression(alpha_1=0.0003701926442639788, alpha_2=2.2118001735899097e-07,
165169
copy_X=False, lambda_1=1.2037591637980971e-06,
166170
lambda_2=4.358378124977852e-09,
167171
threshold_lambda=1136.5286041327277, tol=0.021944240404849075)},
168172
7: { 'cost': 0.5186726734789994,
169-
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f8e5fcafe50>,
173+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7facbe576ac0>,
170174
'ensemble_weight': 0.06,
171-
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f8e60211910>,
175+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7facbe5630d0>,
172176
'model_id': 7,
173177
'rank': 5,
174-
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f8e60211f10>,
178+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7facbe563ee0>,
175179
'sklearn_regressor': HistGradientBoostingRegressor(l2_regularization=1.8428972335335263e-10,
176180
learning_rate=0.012607824914758717, max_iter=512,
177181
max_leaf_nodes=10, min_samples_leaf=8,
178182
n_iter_no_change=0, random_state=1,
179183
validation_fraction=None, warm_start=True)},
180184
11: { 'cost': 0.5073997164657239,
181-
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f8e645aa2b0>,
185+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7facd51ff5b0>,
182186
'ensemble_weight': 0.02,
183-
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f8e60326190>,
187+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7facbd655df0>,
184188
'model_id': 11,
185189
'rank': 4,
186-
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f8e60326d00>,
190+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7facbd655d90>,
187191
'sklearn_regressor': RandomForestRegressor(bootstrap=False, criterion='mae',
188192
max_features=0.6277363920171745, min_samples_leaf=6,
189193
min_samples_split=15, n_estimators=512, n_jobs=1,
190194
random_state=1, warm_start=True)},
191195
25: { 'cost': 0.43667876507897496,
192-
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f8e645aae50>,
196+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7facc1a38460>,
193197
'ensemble_weight': 0.46,
194-
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f8e62ac6f40>,
198+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7facc1a38c40>,
195199
'model_id': 25,
196200
'rank': 1,
197-
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f8e62ac6940>,
201+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7facc1a38a90>,
198202
'sklearn_regressor': SGDRegressor(alpha=0.0006517033225329654, epsilon=0.012150149892783745,
199203
eta0=0.016444224834275295, l1_ratio=1.7462342366289323e-09,
200204
loss='epsilon_insensitive', max_iter=16, penalty='elasticnet',
201205
power_t=0.21521743568582094, random_state=1,
202206
tol=0.002431731981071206, warm_start=True)},
203207
27: { 'cost': 0.4622486119001967,
204-
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f8e601bf910>,
208+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7facc06870d0>,
205209
'ensemble_weight': 0.14,
206-
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f8e602fadc0>,
210+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7facbee76a30>,
207211
'model_id': 27,
208212
'rank': 3,
209-
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f8e602fa6a0>,
213+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7facbee76580>,
210214
'sklearn_regressor': ARDRegression(alpha_1=2.7664515192592053e-05, alpha_2=9.504988116581138e-07,
211215
copy_X=False, lambda_1=6.50650698230178e-09,
212216
lambda_2=4.238533890074848e-07,
@@ -290,7 +294,7 @@ the true value).
290294

291295
.. rst-class:: sphx-glr-timing
292296

293-
**Total running time of the script:** ( 1 minutes 55.982 seconds)
297+
**Total running time of the script:** ( 1 minutes 56.083 seconds)
294298

295299

296300
.. _sphx_glr_download_examples_20_basic_example_regression.py:

development/_sources/examples/20_basic/sg_execution_times.rst.txt

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -5,14 +5,14 @@
55

66
Computation times
77
=================
8-
**06:12.702** total execution time for **examples_20_basic** files:
8+
**06:05.185** total execution time for **examples_20_basic** files:
99

1010
+-------------------------------------------------------------------------------------------------------------------+-----------+--------+
11-
| :ref:`sphx_glr_examples_20_basic_example_classification.py` (``example_classification.py``) | 02:04.606 | 0.0 MB |
11+
| :ref:`sphx_glr_examples_20_basic_example_classification.py` (``example_classification.py``) | 02:01.540 | 0.0 MB |
1212
+-------------------------------------------------------------------------------------------------------------------+-----------+--------+
13-
| :ref:`sphx_glr_examples_20_basic_example_multioutput_regression.py` (``example_multioutput_regression.py``) | 01:57.283 | 0.0 MB |
13+
| :ref:`sphx_glr_examples_20_basic_example_regression.py` (``example_regression.py``) | 01:56.083 | 0.0 MB |
1414
+-------------------------------------------------------------------------------------------------------------------+-----------+--------+
15-
| :ref:`sphx_glr_examples_20_basic_example_regression.py` (``example_regression.py``) | 01:55.982 | 0.0 MB |
15+
| :ref:`sphx_glr_examples_20_basic_example_multioutput_regression.py` (``example_multioutput_regression.py``) | 01:55.260 | 0.0 MB |
1616
+-------------------------------------------------------------------------------------------------------------------+-----------+--------+
17-
| :ref:`sphx_glr_examples_20_basic_example_multilabel_classification.py` (``example_multilabel_classification.py``) | 00:14.831 | 0.0 MB |
17+
| :ref:`sphx_glr_examples_20_basic_example_multilabel_classification.py` (``example_multilabel_classification.py``) | 00:12.302 | 0.0 MB |
1818
+-------------------------------------------------------------------------------------------------------------------+-----------+--------+

0 commit comments

Comments
 (0)