Skip to content

Commit a96178c

Browse files
author
Github Actions
committed
github-actions[bot]: chore: update pre-commit hooks (#1580)
1 parent 6bf50eb commit a96178c

File tree

75 files changed

+3926
-4044
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

75 files changed

+3926
-4044
lines changed
Binary file not shown.
Binary file not shown.
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading

development/_sources/examples/20_basic/example_classification.rst.txt

Lines changed: 106 additions & 154 deletions
Large diffs are not rendered by default.

development/_sources/examples/20_basic/example_multilabel_classification.rst.txt

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -150,7 +150,7 @@ View the models found by auto-sklearn
150150
151151
rank ensemble_weight type cost duration
152152
model_id
153-
2 1 1.0 random_forest 0.447294 3.529664
153+
2 1 1.0 random_forest 0.447294 3.113838
154154
155155
156156
@@ -176,11 +176,11 @@ Print the final ensemble constructed by auto-sklearn
176176
.. code-block:: none
177177
178178
{ 2: { 'balancing': Balancing(random_state=1),
179-
'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7f84bcd4ce20>,
179+
'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7f869d90c730>,
180180
'cost': 0.4472941828699525,
181-
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f84bd0140d0>,
181+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f869dbf0430>,
182182
'ensemble_weight': 1.0,
183-
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f84bcd4c3d0>,
183+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f869d90cf40>,
184184
'model_id': 2,
185185
'rank': 1,
186186
'sklearn_classifier': RandomForestClassifier(max_features=15, n_estimators=512, n_jobs=1,
@@ -253,7 +253,7 @@ Get the Score of the final ensemble
253253
254254
.. rst-class:: sphx-glr-timing
255255

256-
**Total running time of the script:** ( 0 minutes 19.901 seconds)
256+
**Total running time of the script:** ( 0 minutes 13.835 seconds)
257257

258258

259259
.. _sphx_glr_download_examples_20_basic_example_multilabel_classification.py:

development/_sources/examples/20_basic/example_multioutput_regression.rst.txt

Lines changed: 30 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -120,10 +120,11 @@ View the models found by auto-sklearn
120120

121121
.. code-block:: none
122122
123-
rank ensemble_weight type cost duration
124-
model_id
125-
4 1 0.64 gaussian_process 7.018884e-08 9.991048
126-
11 2 0.36 gaussian_process 8.962683e-08 18.655118
123+
rank ensemble_weight type cost duration
124+
model_id
125+
15 1 0.5 gaussian_process 3.140841e-08 9.127445
126+
12 2 0.3 gaussian_process 3.834848e-08 9.812679
127+
4 3 0.2 gaussian_process 4.714587e-08 3.800201
127128
128129
129130
@@ -148,25 +149,36 @@ Print the final ensemble constructed by auto-sklearn
148149

149150
.. code-block:: none
150151
151-
{ 4: { 'cost': 7.018883696474632e-08,
152-
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f84bb2460d0>,
153-
'ensemble_weight': 0.64,
154-
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f84b8459f40>,
152+
{ 4: { 'cost': 4.714586709919644e-08,
153+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f869de934f0>,
154+
'ensemble_weight': 0.2,
155+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f869df58d90>,
155156
'model_id': 4,
156157
'rank': 1,
157-
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f84b8459af0>,
158+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f869df58ee0>,
158159
'sklearn_regressor': GaussianProcessRegressor(alpha=2.6231667524556984e-13,
159160
kernel=RBF(length_scale=[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]),
160161
n_restarts_optimizer=10, normalize_y=True,
161162
random_state=1)},
162-
11: { 'cost': 8.962683140101291e-08,
163-
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f84bb246fd0>,
164-
'ensemble_weight': 0.36,
165-
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f84b8611760>,
166-
'model_id': 11,
163+
12: { 'cost': 3.83484826116387e-08,
164+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f869dc44700>,
165+
'ensemble_weight': 0.3,
166+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f869daeadc0>,
167+
'model_id': 12,
167168
'rank': 2,
168-
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f84b8611790>,
169-
'sklearn_regressor': GaussianProcessRegressor(alpha=8.548590540679561e-13,
169+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f869daea250>,
170+
'sklearn_regressor': GaussianProcessRegressor(alpha=2.7695662487241213e-12,
171+
kernel=RBF(length_scale=[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]),
172+
n_restarts_optimizer=10, normalize_y=True,
173+
random_state=1)},
174+
15: { 'cost': 3.140841220439228e-08,
175+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f869dc44250>,
176+
'ensemble_weight': 0.5,
177+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f869ac2ee50>,
178+
'model_id': 15,
179+
'rank': 3,
180+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f869ac2ec10>,
181+
'sklearn_regressor': GaussianProcessRegressor(alpha=1.0204391750758994e-13,
170182
kernel=RBF(length_scale=[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]),
171183
n_restarts_optimizer=10, normalize_y=True,
172184
random_state=1)}}
@@ -195,7 +207,7 @@ Get the Score of the final ensemble
195207

196208
.. code-block:: none
197209
198-
R2 score: 0.9999999634540817
210+
R2 score: 0.9999999634454806
199211
200212
201213
@@ -410,7 +422,7 @@ Get the configuration space
410422
411423
.. rst-class:: sphx-glr-timing
412424

413-
**Total running time of the script:** ( 1 minutes 54.463 seconds)
425+
**Total running time of the script:** ( 1 minutes 56.004 seconds)
414426

415427

416428
.. _sphx_glr_download_examples_20_basic_example_multioutput_regression.py:

development/_sources/examples/20_basic/example_regression.rst.txt

Lines changed: 37 additions & 37 deletions
Original file line numberDiff line numberDiff line change
@@ -121,11 +121,11 @@ View the models found by auto-sklearn
121121
122122
rank ensemble_weight type cost duration
123123
model_id
124-
25 1 0.30 sgd 0.436679 0.684569
125-
6 2 0.38 ard_regression 0.455042 0.664772
126-
31 3 0.26 ard_regression 0.461909 0.646299
127-
11 4 0.02 random_forest 0.507400 9.829460
128-
7 5 0.04 gradient_boosting 0.518673 1.178347
124+
25 1 0.24 sgd 0.436679 0.578382
125+
6 2 0.26 ard_regression 0.455042 0.588125
126+
31 3 0.28 ard_regression 0.461909 0.569287
127+
35 4 0.18 ard_regression 0.468308 0.995609
128+
7 5 0.04 gradient_boosting 0.518673 1.024478
129129
130130
131131
@@ -151,62 +151,62 @@ Print the final ensemble constructed by auto-sklearn
151151
.. code-block:: none
152152
153153
{ 6: { 'cost': 0.4550418898836528,
154-
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f84d07146a0>,
155-
'ensemble_weight': 0.38,
156-
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f84b89d0490>,
154+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f869dbfa160>,
155+
'ensemble_weight': 0.26,
156+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f869dd6a730>,
157157
'model_id': 6,
158158
'rank': 1,
159-
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f84d0a1a280>,
159+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f869dd6acd0>,
160160
'sklearn_regressor': ARDRegression(alpha_1=0.0003701926442639788, alpha_2=2.2118001735899097e-07,
161161
copy_X=False, lambda_1=1.2037591637980971e-06,
162162
lambda_2=4.358378124977852e-09,
163163
threshold_lambda=1136.5286041327277, tol=0.021944240404849075)},
164164
7: { 'cost': 0.5186726734789994,
165-
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f84bb2fc490>,
165+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f869dd0ef10>,
166166
'ensemble_weight': 0.04,
167-
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f84bb0f40d0>,
167+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f869aed6ca0>,
168168
'model_id': 7,
169169
'rank': 2,
170-
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f84bb0f4dc0>,
170+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f869aed6bb0>,
171171
'sklearn_regressor': HistGradientBoostingRegressor(l2_regularization=1.8428972335335263e-10,
172172
learning_rate=0.012607824914758717, max_iter=512,
173173
max_leaf_nodes=10, min_samples_leaf=8,
174174
n_iter_no_change=0, random_state=1,
175175
validation_fraction=None, warm_start=True)},
176-
11: { 'cost': 0.5073997164657239,
177-
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f84b89d09a0>,
178-
'ensemble_weight': 0.02,
179-
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f84bb0bc940>,
180-
'model_id': 11,
181-
'rank': 3,
182-
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f84bb0bc3a0>,
183-
'sklearn_regressor': RandomForestRegressor(bootstrap=False, criterion='mae',
184-
max_features=0.6277363920171745, min_samples_leaf=6,
185-
min_samples_split=15, n_estimators=512, n_jobs=1,
186-
random_state=1, warm_start=True)},
187176
25: { 'cost': 0.43667876507897496,
188-
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f84bcd43cd0>,
189-
'ensemble_weight': 0.3,
190-
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f84bb27d670>,
177+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f86b15a0f70>,
178+
'ensemble_weight': 0.24,
179+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f869e2df280>,
191180
'model_id': 25,
192-
'rank': 4,
193-
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f84bb27daf0>,
181+
'rank': 3,
182+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f869e2dfe20>,
194183
'sklearn_regressor': SGDRegressor(alpha=0.0006517033225329654, epsilon=0.012150149892783745,
195184
eta0=0.016444224834275295, l1_ratio=1.7462342366289323e-09,
196185
loss='epsilon_insensitive', max_iter=16, penalty='elasticnet',
197186
power_t=0.21521743568582094, random_state=1,
198187
tol=0.002431731981071206, warm_start=True)},
199188
31: { 'cost': 0.4619090472287596,
200-
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f84baf978b0>,
201-
'ensemble_weight': 0.26,
202-
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f84bb2b81c0>,
189+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f869dc963a0>,
190+
'ensemble_weight': 0.28,
191+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f869de5e1c0>,
203192
'model_id': 31,
204-
'rank': 5,
205-
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f84bb2b88e0>,
193+
'rank': 4,
194+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f869de5e7c0>,
206195
'sklearn_regressor': ARDRegression(alpha_1=0.0003231549748466066, alpha_2=0.0002550914122041718,
207196
copy_X=False, lambda_1=2.0381967509909317e-05,
208197
lambda_2=6.669372163715464e-06,
209-
threshold_lambda=4787.837289272208, tol=0.0022718359328007297)}}
198+
threshold_lambda=4787.837289272208, tol=0.0022718359328007297)},
199+
35: { 'cost': 0.46830847406823906,
200+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f869ae06ac0>,
201+
'ensemble_weight': 0.18,
202+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f869ae83dc0>,
203+
'model_id': 35,
204+
'rank': 5,
205+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f869ae83400>,
206+
'sklearn_regressor': ARDRegression(alpha_1=0.00028378747975261987, alpha_2=2.480473124043016e-08,
207+
copy_X=False, lambda_1=2.443383072629711e-07,
208+
lambda_2=8.793566274927655e-05,
209+
threshold_lambda=4237.033213139775, tol=0.003058396088909069)}}
210210
211211
212212
@@ -238,8 +238,8 @@ predicting the data mean has an R2 score of 0.
238238

239239
.. code-block:: none
240240
241-
Train R2 score: 0.587810789938566
242-
Test R2 score: 0.39825550070176285
241+
Train R2 score: 0.5910262435863187
242+
Test R2 score: 0.4074697347767652
243243
244244
245245
@@ -284,7 +284,7 @@ the true value).
284284

285285
.. rst-class:: sphx-glr-timing
286286

287-
**Total running time of the script:** ( 1 minutes 59.395 seconds)
287+
**Total running time of the script:** ( 1 minutes 54.263 seconds)
288288

289289

290290
.. _sphx_glr_download_examples_20_basic_example_regression.py:

development/_sources/examples/20_basic/sg_execution_times.rst.txt

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -5,14 +5,14 @@
55

66
Computation times
77
=================
8-
**06:14.841** total execution time for **examples_20_basic** files:
8+
**06:03.519** total execution time for **examples_20_basic** files:
99

1010
+-------------------------------------------------------------------------------------------------------------------+-----------+--------+
11-
| :ref:`sphx_glr_examples_20_basic_example_classification.py` (``example_classification.py``) | 02:01.081 | 0.0 MB |
11+
| :ref:`sphx_glr_examples_20_basic_example_classification.py` (``example_classification.py``) | 01:59.417 | 0.0 MB |
1212
+-------------------------------------------------------------------------------------------------------------------+-----------+--------+
13-
| :ref:`sphx_glr_examples_20_basic_example_regression.py` (``example_regression.py``) | 01:59.395 | 0.0 MB |
13+
| :ref:`sphx_glr_examples_20_basic_example_multioutput_regression.py` (``example_multioutput_regression.py``) | 01:56.004 | 0.0 MB |
1414
+-------------------------------------------------------------------------------------------------------------------+-----------+--------+
15-
| :ref:`sphx_glr_examples_20_basic_example_multioutput_regression.py` (``example_multioutput_regression.py``) | 01:54.463 | 0.0 MB |
15+
| :ref:`sphx_glr_examples_20_basic_example_regression.py` (``example_regression.py``) | 01:54.263 | 0.0 MB |
1616
+-------------------------------------------------------------------------------------------------------------------+-----------+--------+
17-
| :ref:`sphx_glr_examples_20_basic_example_multilabel_classification.py` (``example_multilabel_classification.py``) | 00:19.901 | 0.0 MB |
17+
| :ref:`sphx_glr_examples_20_basic_example_multilabel_classification.py` (``example_multilabel_classification.py``) | 00:13.835 | 0.0 MB |
1818
+-------------------------------------------------------------------------------------------------------------------+-----------+--------+

0 commit comments

Comments
 (0)