@@ -121,12 +121,13 @@ View the models found by auto-sklearn
121
121
122
122
.. code-block :: none
123
123
124
- rank ensemble_weight type cost duration
125
- model_id
126
- 25 1 0.44 sgd 0.436679 0.605110
127
- 6 2 0.34 ard_regression 0.455042 0.629450
128
- 39 3 0.18 ard_regression 0.474807 0.603827
129
- 7 4 0.04 gradient_boosting 0.518673 1.111901
124
+ rank ensemble_weight type cost duration
125
+ model_id
126
+ 25 1 0.46 sgd 0.436679 0.782460
127
+ 6 2 0.32 ard_regression 0.455042 0.800511
128
+ 27 3 0.14 ard_regression 0.462249 0.788985
129
+ 11 4 0.02 random_forest 0.507400 10.530246
130
+ 7 5 0.06 gradient_boosting 0.518673 1.700823
130
131
131
132
132
133
@@ -154,51 +155,62 @@ Print the final ensemble constructed by auto-sklearn
154
155
.. code-block :: none
155
156
156
157
{ 6: { 'cost': 0.4550418898836528,
157
- 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fb34b258970 >,
158
- 'ensemble_weight': 0.34 ,
159
- 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fb34aba8310 >,
158
+ 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f8344014640 >,
159
+ 'ensemble_weight': 0.32 ,
160
+ 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f834408d1f0 >,
160
161
'model_id': 6,
161
162
'rank': 2,
162
- 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fb34aba8a60 >,
163
+ 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f834408dbe0 >,
163
164
'sklearn_regressor': ARDRegression(alpha_1=0.0003701926442639788, alpha_2=2.2118001735899097e-07,
164
165
copy_X=False, lambda_1=1.2037591637980971e-06,
165
166
lambda_2=4.358378124977852e-09,
166
167
threshold_lambda=1136.5286041327277, tol=0.021944240404849075)},
167
168
7: { 'cost': 0.5186726734789994,
168
- 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fb347cca280 >,
169
- 'ensemble_weight': 0.04 ,
170
- 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fb347b8ca30 >,
169
+ 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f833fc839d0 >,
170
+ 'ensemble_weight': 0.06 ,
171
+ 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f8344108970 >,
171
172
'model_id': 7,
172
- 'rank': 4 ,
173
- 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fb347b8c820 >,
173
+ 'rank': 5 ,
174
+ 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f835733d940 >,
174
175
'sklearn_regressor': HistGradientBoostingRegressor(l2_regularization=1.8428972335335263e-10,
175
176
learning_rate=0.012607824914758717, max_iter=512,
176
177
max_leaf_nodes=10, min_samples_leaf=8,
177
178
n_iter_no_change=0, random_state=1,
178
179
validation_fraction=None, warm_start=True)},
180
+ 11: { 'cost': 0.5073997164657239,
181
+ 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f834416e8b0>,
182
+ 'ensemble_weight': 0.02,
183
+ 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f833fe9b7f0>,
184
+ 'model_id': 11,
185
+ 'rank': 4,
186
+ 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f833fe9b8e0>,
187
+ 'sklearn_regressor': RandomForestRegressor(bootstrap=False, criterion='mae',
188
+ max_features=0.6277363920171745, min_samples_leaf=6,
189
+ min_samples_split=15, n_estimators=512, n_jobs=1,
190
+ random_state=1, warm_start=True)},
179
191
25: { 'cost': 0.43667876507897496,
180
- 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fb34aac2880 >,
181
- 'ensemble_weight': 0.44 ,
182
- 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fb347ccad30 >,
192
+ 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f83440427f0 >,
193
+ 'ensemble_weight': 0.46 ,
194
+ 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f834266e4c0 >,
183
195
'model_id': 25,
184
196
'rank': 1,
185
- 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fb345820c70 >,
197
+ 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f834266e5e0 >,
186
198
'sklearn_regressor': SGDRegressor(alpha=0.0006517033225329654, epsilon=0.012150149892783745,
187
199
eta0=0.016444224834275295, l1_ratio=1.7462342366289323e-09,
188
200
loss='epsilon_insensitive', max_iter=16, penalty='elasticnet',
189
201
power_t=0.21521743568582094, random_state=1,
190
202
tol=0.002431731981071206, warm_start=True)},
191
- 39 : { 'cost': 0.4748068089650166 ,
192
- 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fb34b258eb0 >,
193
- 'ensemble_weight': 0.18 ,
194
- 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fb34674f6a0 >,
195
- 'model_id': 39 ,
203
+ 27 : { 'cost': 0.4622486119001967 ,
204
+ 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f83442101f0 >,
205
+ 'ensemble_weight': 0.14 ,
206
+ 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f83426df640 >,
207
+ 'model_id': 27 ,
196
208
'rank': 3,
197
- 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fb34674fa90 >,
198
- 'sklearn_regressor': ARDRegression(alpha_1=0.0005012365297609799 , alpha_2=3.025360750168211e-08 ,
199
- copy_X=False, lambda_1=4.9749646614525684e-05 ,
200
- lambda_2=3.2368037115065363e-10 ,
201
- threshold_lambda=18669.665899307194 , tol=0.0012624032013298571 )}}
209
+ 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f83426df0a0 >,
210
+ 'sklearn_regressor': ARDRegression(alpha_1=2.7664515192592053e-05 , alpha_2=9.504988116581138e-07 ,
211
+ copy_X=False, lambda_1=6.50650698230178e-09 ,
212
+ lambda_2=4.238533890074848e-07 ,
213
+ threshold_lambda=78251.58542976103 , tol=0.0007301343236220855 )}}
202
214
203
215
204
216
@@ -232,8 +244,8 @@ predicting the data mean has an R2 score of 0.
232
244
233
245
.. code-block :: none
234
246
235
- Train R2 score: 0.5855373845454157
236
- Test R2 score: 0.39879073225079487
247
+ Train R2 score: 0.5944780427522034
248
+ Test R2 score: 0.3959585042866587
237
249
238
250
239
251
@@ -278,7 +290,7 @@ the true value).
278
290
279
291
.. rst-class :: sphx-glr-timing
280
292
281
- **Total running time of the script: ** ( 1 minutes 55.959 seconds)
293
+ **Total running time of the script: ** ( 2 minutes 1.625 seconds)
282
294
283
295
284
296
.. _sphx_glr_download_examples_20_basic_example_regression.py :
0 commit comments