Skip to content

Commit c65b0fa

Browse files
author
Github Actions
committed
Eddie Bergman: Fix: Make SimpleClassificationPipeline tests deterministic (#1366)
1 parent 07cd33b commit c65b0fa

File tree

67 files changed

+3145
-4181
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

67 files changed

+3145
-4181
lines changed
Binary file not shown.
Binary file not shown.
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading

development/_sources/examples/20_basic/example_classification.rst.txt

Lines changed: 165 additions & 299 deletions
Large diffs are not rendered by default.

development/_sources/examples/20_basic/example_multilabel_classification.rst.txt

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -155,7 +155,7 @@ View the models found by auto-sklearn
155155
156156
rank ensemble_weight type cost duration
157157
model_id
158-
2 1 1.0 random_forest 0.447294 3.220523
158+
2 1 1.0 random_forest 0.447294 4.579435
159159
160160
161161
@@ -183,11 +183,11 @@ Print the final ensemble constructed by auto-sklearn
183183
.. code-block:: none
184184
185185
{ 2: { 'balancing': Balancing(random_state=1),
186-
'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fb34b449280>,
186+
'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7f8344032f10>,
187187
'cost': 0.4472941828699525,
188-
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fb347b6cf70>,
188+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f83428e22b0>,
189189
'ensemble_weight': 1.0,
190-
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fb34b4497f0>,
190+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f8344032c10>,
191191
'model_id': 2,
192192
'rank': 1,
193193
'sklearn_classifier': RandomForestClassifier(max_features=15, n_estimators=512, n_jobs=1,
@@ -264,7 +264,7 @@ Get the Score of the final ensemble
264264
265265
.. rst-class:: sphx-glr-timing
266266

267-
**Total running time of the script:** ( 0 minutes 12.221 seconds)
267+
**Total running time of the script:** ( 0 minutes 18.439 seconds)
268268

269269

270270
.. _sphx_glr_download_examples_20_basic_example_multilabel_classification.py:

development/_sources/examples/20_basic/example_multioutput_regression.rst.txt

Lines changed: 20 additions & 20 deletions
Original file line numberDiff line numberDiff line change
@@ -123,10 +123,10 @@ View the models found by auto-sklearn
123123

124124
.. code-block:: none
125125
126-
rank ensemble_weight type cost duration
127-
model_id
128-
18 1 0.8 gaussian_process 0.000007 2.596252
129-
16 2 0.2 gaussian_process 0.000015 7.973967
126+
rank ensemble_weight type cost duration
127+
model_id
128+
16 1 0.94 gaussian_process 0.000009 18.825621
129+
14 2 0.06 gaussian_process 0.000073 3.463700
130130
131131
132132
@@ -153,25 +153,25 @@ Print the final ensemble constructed by auto-sklearn
153153

154154
.. code-block:: none
155155
156-
{ 16: { 'cost': 1.453992678268623e-05,
157-
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fb34aacdd90>,
158-
'ensemble_weight': 0.2,
159-
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fb347b2b220>,
160-
'model_id': 16,
156+
{ 14: { 'cost': 7.294978049132705e-05,
157+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f833fa19d00>,
158+
'ensemble_weight': 0.06,
159+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f83441fd070>,
160+
'model_id': 14,
161161
'rank': 2,
162-
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fb347d22910>,
163-
'sklearn_regressor': GaussianProcessRegressor(alpha=6.883531961818898e-12,
162+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f83441fd0a0>,
163+
'sklearn_regressor': GaussianProcessRegressor(alpha=0.0001892420474677165,
164164
kernel=RBF(length_scale=[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]),
165165
n_restarts_optimizer=10, normalize_y=True,
166166
random_state=1)},
167-
18: { 'cost': 6.532830369665454e-06,
168-
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fb3459dc730>,
169-
'ensemble_weight': 0.8,
170-
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fb34aacdbe0>,
171-
'model_id': 18,
167+
16: { 'cost': 8.604209460028045e-06,
168+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f8344334670>,
169+
'ensemble_weight': 0.94,
170+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f833fc612e0>,
171+
'model_id': 16,
172172
'rank': 1,
173-
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fb34aacda00>,
174-
'sklearn_regressor': GaussianProcessRegressor(alpha=9.054973819256506e-06,
173+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f833fc616a0>,
174+
'sklearn_regressor': GaussianProcessRegressor(alpha=6.883531961818898e-12,
175175
kernel=RBF(length_scale=[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]),
176176
n_restarts_optimizer=10, normalize_y=True,
177177
random_state=1)}}
@@ -202,7 +202,7 @@ Get the Score of the final ensemble
202202

203203
.. code-block:: none
204204
205-
R2 score: 0.999993617907473
205+
R2 score: 0.9999851720273112
206206
207207
208208
@@ -425,7 +425,7 @@ Get the configuration space
425425
426426
.. rst-class:: sphx-glr-timing
427427

428-
**Total running time of the script:** ( 1 minutes 57.174 seconds)
428+
**Total running time of the script:** ( 1 minutes 58.336 seconds)
429429

430430

431431
.. _sphx_glr_download_examples_20_basic_example_multioutput_regression.py:

development/_sources/examples/20_basic/example_regression.rst.txt

Lines changed: 44 additions & 32 deletions
Original file line numberDiff line numberDiff line change
@@ -121,12 +121,13 @@ View the models found by auto-sklearn
121121

122122
.. code-block:: none
123123
124-
rank ensemble_weight type cost duration
125-
model_id
126-
25 1 0.44 sgd 0.436679 0.605110
127-
6 2 0.34 ard_regression 0.455042 0.629450
128-
39 3 0.18 ard_regression 0.474807 0.603827
129-
7 4 0.04 gradient_boosting 0.518673 1.111901
124+
rank ensemble_weight type cost duration
125+
model_id
126+
25 1 0.46 sgd 0.436679 0.782460
127+
6 2 0.32 ard_regression 0.455042 0.800511
128+
27 3 0.14 ard_regression 0.462249 0.788985
129+
11 4 0.02 random_forest 0.507400 10.530246
130+
7 5 0.06 gradient_boosting 0.518673 1.700823
130131
131132
132133
@@ -154,51 +155,62 @@ Print the final ensemble constructed by auto-sklearn
154155
.. code-block:: none
155156
156157
{ 6: { 'cost': 0.4550418898836528,
157-
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fb34b258970>,
158-
'ensemble_weight': 0.34,
159-
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fb34aba8310>,
158+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f8344014640>,
159+
'ensemble_weight': 0.32,
160+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f834408d1f0>,
160161
'model_id': 6,
161162
'rank': 2,
162-
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fb34aba8a60>,
163+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f834408dbe0>,
163164
'sklearn_regressor': ARDRegression(alpha_1=0.0003701926442639788, alpha_2=2.2118001735899097e-07,
164165
copy_X=False, lambda_1=1.2037591637980971e-06,
165166
lambda_2=4.358378124977852e-09,
166167
threshold_lambda=1136.5286041327277, tol=0.021944240404849075)},
167168
7: { 'cost': 0.5186726734789994,
168-
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fb347cca280>,
169-
'ensemble_weight': 0.04,
170-
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fb347b8ca30>,
169+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f833fc839d0>,
170+
'ensemble_weight': 0.06,
171+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f8344108970>,
171172
'model_id': 7,
172-
'rank': 4,
173-
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fb347b8c820>,
173+
'rank': 5,
174+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f835733d940>,
174175
'sklearn_regressor': HistGradientBoostingRegressor(l2_regularization=1.8428972335335263e-10,
175176
learning_rate=0.012607824914758717, max_iter=512,
176177
max_leaf_nodes=10, min_samples_leaf=8,
177178
n_iter_no_change=0, random_state=1,
178179
validation_fraction=None, warm_start=True)},
180+
11: { 'cost': 0.5073997164657239,
181+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f834416e8b0>,
182+
'ensemble_weight': 0.02,
183+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f833fe9b7f0>,
184+
'model_id': 11,
185+
'rank': 4,
186+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f833fe9b8e0>,
187+
'sklearn_regressor': RandomForestRegressor(bootstrap=False, criterion='mae',
188+
max_features=0.6277363920171745, min_samples_leaf=6,
189+
min_samples_split=15, n_estimators=512, n_jobs=1,
190+
random_state=1, warm_start=True)},
179191
25: { 'cost': 0.43667876507897496,
180-
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fb34aac2880>,
181-
'ensemble_weight': 0.44,
182-
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fb347ccad30>,
192+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f83440427f0>,
193+
'ensemble_weight': 0.46,
194+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f834266e4c0>,
183195
'model_id': 25,
184196
'rank': 1,
185-
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fb345820c70>,
197+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f834266e5e0>,
186198
'sklearn_regressor': SGDRegressor(alpha=0.0006517033225329654, epsilon=0.012150149892783745,
187199
eta0=0.016444224834275295, l1_ratio=1.7462342366289323e-09,
188200
loss='epsilon_insensitive', max_iter=16, penalty='elasticnet',
189201
power_t=0.21521743568582094, random_state=1,
190202
tol=0.002431731981071206, warm_start=True)},
191-
39: { 'cost': 0.4748068089650166,
192-
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fb34b258eb0>,
193-
'ensemble_weight': 0.18,
194-
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fb34674f6a0>,
195-
'model_id': 39,
203+
27: { 'cost': 0.4622486119001967,
204+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f83442101f0>,
205+
'ensemble_weight': 0.14,
206+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f83426df640>,
207+
'model_id': 27,
196208
'rank': 3,
197-
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fb34674fa90>,
198-
'sklearn_regressor': ARDRegression(alpha_1=0.0005012365297609799, alpha_2=3.025360750168211e-08,
199-
copy_X=False, lambda_1=4.9749646614525684e-05,
200-
lambda_2=3.2368037115065363e-10,
201-
threshold_lambda=18669.665899307194, tol=0.0012624032013298571)}}
209+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f83426df0a0>,
210+
'sklearn_regressor': ARDRegression(alpha_1=2.7664515192592053e-05, alpha_2=9.504988116581138e-07,
211+
copy_X=False, lambda_1=6.50650698230178e-09,
212+
lambda_2=4.238533890074848e-07,
213+
threshold_lambda=78251.58542976103, tol=0.0007301343236220855)}}
202214
203215
204216
@@ -232,8 +244,8 @@ predicting the data mean has an R2 score of 0.
232244

233245
.. code-block:: none
234246
235-
Train R2 score: 0.5855373845454157
236-
Test R2 score: 0.39879073225079487
247+
Train R2 score: 0.5944780427522034
248+
Test R2 score: 0.3959585042866587
237249
238250
239251
@@ -278,7 +290,7 @@ the true value).
278290

279291
.. rst-class:: sphx-glr-timing
280292

281-
**Total running time of the script:** ( 1 minutes 55.959 seconds)
293+
**Total running time of the script:** ( 2 minutes 1.625 seconds)
282294

283295

284296
.. _sphx_glr_download_examples_20_basic_example_regression.py:

development/_sources/examples/20_basic/sg_execution_times.rst.txt

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -5,14 +5,14 @@
55

66
Computation times
77
=================
8-
**06:07.776** total execution time for **examples_20_basic** files:
8+
**06:23.041** total execution time for **examples_20_basic** files:
99

1010
+-------------------------------------------------------------------------------------------------------------------+-----------+--------+
11-
| :ref:`sphx_glr_examples_20_basic_example_classification.py` (``example_classification.py``) | 02:02.422 | 0.0 MB |
11+
| :ref:`sphx_glr_examples_20_basic_example_classification.py` (``example_classification.py``) | 02:04.642 | 0.0 MB |
1212
+-------------------------------------------------------------------------------------------------------------------+-----------+--------+
13-
| :ref:`sphx_glr_examples_20_basic_example_multioutput_regression.py` (``example_multioutput_regression.py``) | 01:57.174 | 0.0 MB |
13+
| :ref:`sphx_glr_examples_20_basic_example_regression.py` (``example_regression.py``) | 02:01.625 | 0.0 MB |
1414
+-------------------------------------------------------------------------------------------------------------------+-----------+--------+
15-
| :ref:`sphx_glr_examples_20_basic_example_regression.py` (``example_regression.py``) | 01:55.959 | 0.0 MB |
15+
| :ref:`sphx_glr_examples_20_basic_example_multioutput_regression.py` (``example_multioutput_regression.py``) | 01:58.336 | 0.0 MB |
1616
+-------------------------------------------------------------------------------------------------------------------+-----------+--------+
17-
| :ref:`sphx_glr_examples_20_basic_example_multilabel_classification.py` (``example_multilabel_classification.py``) | 00:12.221 | 0.0 MB |
17+
| :ref:`sphx_glr_examples_20_basic_example_multilabel_classification.py` (``example_multilabel_classification.py``) | 00:18.439 | 0.0 MB |
1818
+-------------------------------------------------------------------------------------------------------------------+-----------+--------+

0 commit comments

Comments
 (0)