-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathraw_aes_keyring.c
309 lines (260 loc) · 12.2 KB
/
raw_aes_keyring.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
/*
* Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use
* this file except in compliance with the License. A copy of the License is
* located at
*
* http://aws.amazon.com/apache2.0/
*
* or in the "license" file accompanying this file. This file is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
* implied. See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <aws/cryptosdk/materials.h>
#include <aws/cryptosdk/private/cipher.h>
#include <aws/cryptosdk/private/enc_ctx.h>
#include <aws/cryptosdk/private/raw_aes_keyring.h>
#include <aws/cryptosdk/private/utils.h>
struct raw_aes_keyring {
struct aws_cryptosdk_keyring base;
struct aws_allocator *alloc;
struct aws_string *key_namespace;
struct aws_string *key_name;
struct aws_string *raw_key;
};
static int serialize_aad_init(
struct aws_allocator *alloc, struct aws_byte_buf *aad, const struct aws_hash_table *enc_ctx) {
size_t aad_len;
// This does not zero out the bytes of the byte buffer.
// It assures that the buffer object is in proper uninitialized state.
memset(aad, 0, sizeof(*aad));
if (aws_cryptosdk_enc_ctx_size(&aad_len, enc_ctx) || aws_byte_buf_init(aad, alloc, aad_len) ||
aws_cryptosdk_enc_ctx_serialize(alloc, aad, enc_ctx)) {
aws_byte_buf_clean_up(aad);
return AWS_OP_ERR;
}
return AWS_OP_SUCCESS;
}
int aws_cryptosdk_serialize_provider_info_init(
struct aws_allocator *alloc, struct aws_byte_buf *output, const struct aws_string *key_name, const uint8_t *iv) {
size_t serialized_len = key_name->len + RAW_AES_KR_IV_LEN + 8; // 4 for tag len, 4 for iv len
if (aws_byte_buf_init(output, alloc, serialized_len)) {
return AWS_OP_ERR;
}
if (!aws_byte_buf_write_from_whole_string(output, key_name) ||
!aws_byte_buf_write_be32(output, RAW_AES_KR_TAG_LEN * 8) ||
!aws_byte_buf_write_be32(output, RAW_AES_KR_IV_LEN) || !aws_byte_buf_write(output, iv, RAW_AES_KR_IV_LEN)) {
// We should never get here, because buffer was allocated locally to be long enough.
aws_byte_buf_clean_up(output);
return aws_raise_error(AWS_ERROR_UNKNOWN);
}
return AWS_OP_SUCCESS;
}
bool aws_cryptosdk_parse_provider_info(
struct aws_cryptosdk_keyring *kr, struct aws_byte_buf *iv, const struct aws_byte_buf *provider_info) {
struct raw_aes_keyring *self = (struct raw_aes_keyring *)kr;
size_t mkid_len = self->key_name->len;
size_t serialized_len = mkid_len + RAW_AES_KR_IV_LEN + 8;
if (serialized_len != provider_info->len) return false;
struct aws_byte_cursor cur = aws_byte_cursor_from_buf(provider_info);
struct aws_byte_cursor mkid = aws_byte_cursor_advance_nospec(&cur, mkid_len);
if (!mkid.ptr) goto READ_ERR;
if (!aws_string_eq_byte_cursor(self->key_name, &mkid)) return false;
uint32_t tag_len, iv_len;
if (!aws_byte_cursor_read_be32(&cur, &tag_len)) goto READ_ERR;
if (tag_len != RAW_AES_KR_TAG_LEN * 8) return false;
if (!aws_byte_cursor_read_be32(&cur, &iv_len)) goto READ_ERR;
if (iv_len != RAW_AES_KR_IV_LEN) return false;
*iv = aws_byte_buf_from_array(cur.ptr, cur.len);
return true;
READ_ERR:
// We should never get here because we verified cursor was exactly the right length
aws_raise_error(AWS_ERROR_UNKNOWN);
return false;
}
int aws_cryptosdk_raw_aes_keyring_encrypt_data_key_with_iv(
struct aws_cryptosdk_keyring *kr,
struct aws_allocator *request_alloc,
const struct aws_byte_buf *unencrypted_data_key,
struct aws_array_list *edks,
const struct aws_hash_table *enc_ctx,
enum aws_cryptosdk_alg_id alg,
const uint8_t *iv) {
struct raw_aes_keyring *self = (struct raw_aes_keyring *)kr;
const struct aws_cryptosdk_alg_properties *props = aws_cryptosdk_alg_props(alg);
size_t data_key_len = props->data_key_len;
struct aws_byte_buf aad;
if (serialize_aad_init(request_alloc, &aad, enc_ctx)) {
return AWS_OP_ERR;
}
struct aws_cryptosdk_edk edk = { { 0 } };
/* Encrypted data key bytes same length as unencrypted data key in GCM.
* enc_data_key field also includes tag afterward.
*/
if (aws_byte_buf_init(&edk.ciphertext, request_alloc, data_key_len + RAW_AES_KR_TAG_LEN)) {
aws_byte_buf_clean_up(&aad);
return AWS_OP_ERR;
}
struct aws_byte_buf edk_bytes = aws_byte_buf_from_array(edk.ciphertext.buffer, data_key_len);
struct aws_byte_buf tag = aws_byte_buf_from_array(edk.ciphertext.buffer + data_key_len, RAW_AES_KR_TAG_LEN);
if (aws_cryptosdk_aes_gcm_encrypt(
&edk_bytes,
&tag,
aws_byte_cursor_from_buf(unencrypted_data_key),
aws_byte_cursor_from_array(iv, RAW_AES_KR_IV_LEN),
aws_byte_cursor_from_buf(&aad),
self->raw_key))
goto err;
edk.ciphertext.len = edk.ciphertext.capacity;
if (aws_cryptosdk_serialize_provider_info_init(request_alloc, &edk.provider_info, self->key_name, iv)) goto err;
if (aws_byte_buf_init(&edk.provider_id, request_alloc, self->key_namespace->len)) goto err;
if (!aws_byte_buf_write_from_whole_string(&edk.provider_id, self->key_namespace)) goto err;
if (aws_array_list_push_back(edks, &edk)) goto err;
aws_byte_buf_clean_up(&aad);
return AWS_OP_SUCCESS;
err:
aws_cryptosdk_edk_clean_up(&edk);
aws_byte_buf_clean_up(&aad);
return AWS_OP_ERR;
}
static int raw_aes_keyring_on_encrypt(
struct aws_cryptosdk_keyring *kr,
struct aws_allocator *request_alloc,
struct aws_byte_buf *unencrypted_data_key,
struct aws_array_list *keyring_trace,
struct aws_array_list *edks,
const struct aws_hash_table *enc_ctx,
enum aws_cryptosdk_alg_id alg) {
const struct aws_cryptosdk_alg_properties *props = aws_cryptosdk_alg_props(alg);
size_t data_key_len = props->data_key_len;
uint8_t iv[RAW_AES_KR_IV_LEN];
if (aws_cryptosdk_genrandom(iv, RAW_AES_KR_IV_LEN)) return AWS_OP_ERR;
uint32_t flags = 0;
if (!unencrypted_data_key->buffer) {
if (aws_byte_buf_init(unencrypted_data_key, request_alloc, data_key_len)) return AWS_OP_ERR;
if (aws_cryptosdk_genrandom(unencrypted_data_key->buffer, data_key_len)) {
aws_byte_buf_clean_up(unencrypted_data_key);
return AWS_OP_ERR;
}
flags = AWS_CRYPTOSDK_WRAPPING_KEY_GENERATED_DATA_KEY;
unencrypted_data_key->len = unencrypted_data_key->capacity;
}
int ret = aws_cryptosdk_raw_aes_keyring_encrypt_data_key_with_iv(
kr, request_alloc, unencrypted_data_key, edks, enc_ctx, alg, iv);
if (ret && flags) {
aws_byte_buf_clean_up(unencrypted_data_key);
}
if (!ret) {
struct raw_aes_keyring *self = (struct raw_aes_keyring *)kr;
flags |= AWS_CRYPTOSDK_WRAPPING_KEY_ENCRYPTED_DATA_KEY | AWS_CRYPTOSDK_WRAPPING_KEY_SIGNED_ENC_CTX;
aws_cryptosdk_keyring_trace_add_record(
request_alloc, keyring_trace, self->key_namespace, self->key_name, flags);
}
return ret;
}
static int raw_aes_keyring_on_decrypt(
struct aws_cryptosdk_keyring *kr,
struct aws_allocator *request_alloc,
struct aws_byte_buf *unencrypted_data_key,
struct aws_array_list *keyring_trace,
const struct aws_array_list *edks,
const struct aws_hash_table *enc_ctx,
enum aws_cryptosdk_alg_id alg) {
struct raw_aes_keyring *self = (struct raw_aes_keyring *)kr;
struct aws_byte_buf aad;
if (serialize_aad_init(request_alloc, &aad, enc_ctx)) {
return AWS_OP_ERR;
}
size_t num_edks = aws_array_list_length(edks);
const struct aws_cryptosdk_alg_properties *props = aws_cryptosdk_alg_props(alg);
size_t data_key_len = props->data_key_len;
if (aws_byte_buf_init(unencrypted_data_key, request_alloc, props->data_key_len)) {
aws_byte_buf_clean_up(&aad);
return AWS_OP_ERR;
}
for (size_t edk_idx = 0; edk_idx < num_edks; ++edk_idx) {
const struct aws_cryptosdk_edk *edk;
if (aws_array_list_get_at_ptr(edks, (void **)&edk, edk_idx)) {
aws_byte_buf_clean_up(&aad);
return AWS_OP_ERR;
}
if (!edk->provider_id.len || !edk->provider_info.len || !edk->ciphertext.len) continue;
if (!aws_string_eq_byte_buf(self->key_namespace, &edk->provider_id)) continue;
struct aws_byte_buf iv;
if (!aws_cryptosdk_parse_provider_info(kr, &iv, &edk->provider_info)) continue;
const struct aws_byte_buf *edk_bytes = &edk->ciphertext;
/* Using GCM, so encrypted and unencrypted data key have same length, i.e. data_key_len.
* edk_bytes->buffer holds encrypted data key followed by GCM tag.
*/
if (data_key_len + RAW_AES_KR_TAG_LEN != edk_bytes->len) continue;
if (aws_cryptosdk_aes_gcm_decrypt(
unencrypted_data_key,
aws_byte_cursor_from_array(edk_bytes->buffer, data_key_len),
aws_byte_cursor_from_array(edk_bytes->buffer + data_key_len, RAW_AES_KR_TAG_LEN),
aws_byte_cursor_from_buf(&iv),
aws_byte_cursor_from_buf(&aad),
self->raw_key)) {
/* We are here either because of a ciphertext/tag mismatch (e.g., wrong encryption
* context) or because of an OpenSSL error. In either case, nothing better to do
* than just moving on to next EDK, so clear the error code.
*/
aws_reset_error();
} else {
aws_cryptosdk_keyring_trace_add_record(
request_alloc,
keyring_trace,
self->key_namespace,
self->key_name,
AWS_CRYPTOSDK_WRAPPING_KEY_DECRYPTED_DATA_KEY | AWS_CRYPTOSDK_WRAPPING_KEY_VERIFIED_ENC_CTX);
goto success;
}
}
// None of the EDKs worked, clean up unencrypted data key buffer and return success per materials.h
aws_byte_buf_clean_up(unencrypted_data_key);
success:
aws_byte_buf_clean_up(&aad);
return AWS_OP_SUCCESS;
}
static void raw_aes_keyring_destroy(struct aws_cryptosdk_keyring *kr) {
struct raw_aes_keyring *self = (struct raw_aes_keyring *)kr;
aws_string_destroy(self->key_name);
aws_string_destroy(self->key_namespace);
aws_string_destroy_secure(self->raw_key);
aws_mem_release(self->alloc, self);
}
static const struct aws_cryptosdk_keyring_vt raw_aes_keyring_vt = { .vt_size = sizeof(struct aws_cryptosdk_keyring_vt),
.name = "raw AES keyring",
.destroy = raw_aes_keyring_destroy,
.on_encrypt = raw_aes_keyring_on_encrypt,
.on_decrypt = raw_aes_keyring_on_decrypt };
struct aws_cryptosdk_keyring *aws_cryptosdk_raw_aes_keyring_new(
struct aws_allocator *alloc,
const struct aws_string *key_namespace,
const struct aws_string *key_name,
const uint8_t *raw_key_bytes,
enum aws_cryptosdk_aes_key_len key_len) {
AWS_STATIC_STRING_FROM_LITERAL(disallowed, "aws-kms");
if (aws_string_eq(disallowed, key_namespace)) {
aws_raise_error(AWS_CRYPTOSDK_ERR_RESERVED_NAME);
return NULL;
}
struct raw_aes_keyring *kr = aws_mem_acquire(alloc, sizeof(struct raw_aes_keyring));
if (!kr) return NULL;
memset(kr, 0, sizeof(struct raw_aes_keyring));
aws_cryptosdk_keyring_base_init(&kr->base, &raw_aes_keyring_vt);
kr->key_name = aws_cryptosdk_string_dup(alloc, key_name);
if (!kr->key_name) goto oom_err;
kr->key_namespace = aws_cryptosdk_string_dup(alloc, key_namespace);
if (!kr->key_namespace) goto oom_err;
kr->raw_key = aws_string_new_from_array(alloc, raw_key_bytes, key_len);
if (!kr->raw_key) goto oom_err;
kr->alloc = alloc;
return (struct aws_cryptosdk_keyring *)kr;
oom_err:
aws_string_destroy(kr->key_name);
aws_string_destroy(kr->key_namespace);
aws_mem_release(alloc, kr);
return NULL;
}