Skip to content

Commit be272ea

Browse files
merla18busunkim96
authored andcommitted
trying to fix images [(#2101)](GoogleCloudPlatform/python-docs-samples#2101)
1 parent dad4ebf commit be272ea

File tree

1 file changed

+33
-22
lines changed
  • samples/tables/notebooks/retail_product_stockout_prediction

1 file changed

+33
-22
lines changed

samples/tables/notebooks/retail_product_stockout_prediction/README.md

Lines changed: 33 additions & 22 deletions
Original file line numberDiff line numberDiff line change
@@ -298,31 +298,39 @@ You could select either [GCS](https://cloud.google.com/storage/) or [BigQuery](h
298298

299299
1. Enable [AutoML Tables](https://cloud.google.com/automl-tables/docs/quickstart#before_you_begin) on GCP.
300300

301-
2. Visit the [AutoML Tables UI](https://console.cloud.google.com/automl-tables) to begin the process of creating your dataset and training your model. \
302-
>![alt text](https://storage.cloud.google.com/cloud-ml-data/automl-tables/notebooks/automl_stockout_img/Image%201%202019-03-13%20at%201.02.53%20PM.png)
301+
2. Visit the [AutoML Tables UI](https://console.cloud.google.com/automl-tables) to begin the process of creating your dataset and training your model.
302+
303+
![ ](resources/automl_stockout_img/Image%201%202019-03-13%20at%201.02.53%20PM.png)
303304

304305
3. Import your dataset or the dataset you downloaded in the last section \
305-
Click <+New Dataset> → Dataset Name <StockOut> → Click Create Dataset \
306-
>![alt text](https://storage.cloud.google.com/cloud-ml-data/automl-tables/notebooks/automl_stockout_img/Image%202%202019-03-13%20at%201.05.17%20PM.png)
306+
Click <+New Dataset> → Dataset Name <StockOut> → Click Create Dataset
307+
308+
![ ](resources/automl_stockout_img/Image%202%202019-03-13%20at%201.05.17%20PM.png)
307309

308310
4. You can import data from BigQuery or GCS bucket \
309311
a. For BigQuery enter your GCP project ID, Dataset ID and Table ID \
310-
After specifying dataset click import dataset \
311-
>![alt text]https://storage.cloud.google.com/cloud-ml-data/automl-tables/notebooks/automl_stockout_img/Image%203%202019-03-13%20at%201.08.44%20PM.png)
312+
After specifying dataset click import dataset
313+
314+
![ ](resources/automl_stockout_img/Image%203%202019-03-13%20at%201.08.44%20PM.png)
315+
312316
b. For GCS enter the GCS object location by clicking on BROWSE \
313-
After specifying dataset click import dataset \
314-
>![alt text](https://storage.cloud.google.com/cloud-ml-data/automl-tables/notebooks/automl_stockout_img/Image%204%202019-03-13%20at%201.09.56%20PM.png)
317+
After specifying dataset click import dataset
318+
319+
![ ](resources/automl_stockout_img/Image%204%202019-03-13%20at%201.09.56%20PM.png)
320+
315321
Depending on the size of the dataset this import can take some time.
316322

317323
5. Once the import is complete you can set the schema of the imported dataset based on your business understanding of the data \
318324
a. Select Label i.e. Stockout \
319325
b. Select Variable Type for all features \
320-
c. Click Continue \
321-
>![alt text](https://storage.cloud.google.com/cloud-ml-data/automl-tables/notebooks/automl_stockout_img/Image%206%202019-03-13%20at%201.20.57%20PM.png)
326+
c. Click Continue
327+
328+
![ ](resources/automl_stockout_img/Image%206%202019-03-13%20at%201.20.57%20PM.png)
322329

323330
6. The imported dataset is now analyzed \
324-
This helps you analyze the size of your dataset, dig into missing values if any, calculate correlation, mean and standard deviation. If this data quality looks good to you then we can move on to the next tab i.e. train. \
325-
>![alt text](https://storage.cloud.google.com/cloud-ml-data/automl-tables/notebooks/automl_stockout_img/Image%20new%201%202019-03-25%20at%2012.43.13%20AM.png)
331+
This helps you analyze the size of your dataset, dig into missing values if any, calculate correlation, mean and standard deviation. If this data quality looks good to you then we can move on to the next tab i.e. train.
332+
333+
![ ](resources/automl_stockout_img/Image%20new%201%202019-03-25%20at%2012.43.13%20AM.png)
326334

327335
7. Train \
328336
a. Select a model name \
@@ -331,10 +339,11 @@ This helps you analyze the size of your dataset, dig into missing values if any,
331339
d. Select optimization objectives. Such as: ROC, Log Loss or PR curve \
332340
(As our data is imbalances we use PR curve as our optimization metric) \
333341
e. Click TRAIN \
334-
f. Training the model can take some time \
335-
![alt text](https://storage.cloud.google.com/cloud-ml-data/automl-tables/notebooks/automl_stockout_img/Image%208%202019-03-13%20at%201.34.08%20PM.png)
342+
f. Training the model can take some time
343+
344+
![ ](resources/automl_stockout_img/Image%208%202019-03-13%20at%201.34.08%20PM.png)
336345

337-
![alt text](https://storage.cloud.google.com/cloud-ml-data/automl-tables/notebooks/automl_stockout_img/Image%20new%202%202019-03-25%20at%2012.44.18%20AM.png)
346+
![ ](resources/automl_stockout_img/Image%20new%202%202019-03-25%20at%2012.44.18%20AM.png)
338347

339348
8. Once the model is trained you can click on the evaluate tab \
340349
This tab gives you stats for model evaluation \
@@ -343,16 +352,18 @@ This tab gives you stats for model evaluation \
343352
Area Under ROC Curve: 0.893 \
344353
Accuracy: 92.5% \
345354
Log Loss: 0.217 \
346-
Selecting the threshold lets you set a desired precision and recall on your predictions. \
347-
>![alt text](https://storage.cloud.google.com/cloud-ml-data/automl-tables/notebooks/automl_stockout_img/Image%20new%203%202019-03-25%20at%2012.49.40%20AM.png)
355+
Selecting the threshold lets you set a desired precision and recall on your predictions.
356+
357+
![ ](resources/automl_stockout_img/Image%20new%203%202019-03-25%20at%2012.49.40%20AM.png)
348358

349359
9. Using the model created let's use batch prediction to predict stock-out \
350360
a. Batch prediction data inputs could come from BigQuery or your GCS bucket. \
351361
b. Select the GCS bucket to store the results of your batch prediction \
352-
c. Click Send Batch Predictions \
353-
>![alt text](https://storage.cloud.google.com/cloud-ml-data/automl-tables/notebooks/automl_stockout_img/Image%2012%202019-03-13%20at%201.56.43%20PM.png)
362+
c. Click Send Batch Predictions
363+
364+
![ ](resources/automl_stockout_img/Image%2012%202019-03-13%20at%201.56.43%20PM.png)
354365

355-
>![alt text](https://storage.cloud.google.com/cloud-ml-data/automl-tables/notebooks/automl_stockout_img/Image%2013%202019-03-13%20at%201.59.18%20PM.png)
366+
![ ](resources/automl_stockout_img/Image%2013%202019-03-13%20at%201.59.18%20PM.png)
356367

357368

358369
## Building the model using AutoML Tables Python Client Library
@@ -362,7 +373,7 @@ In this notebook, you will learn how to build the same model as you have done on
362373

363374
## Evaluation results and business impact
364375

365-
>![alt text](https://storage.cloud.google.com/cloud-ml-data/automl-tables/notebooks/automl_stockout_img/Image%20new%203%202019-03-25%20at%2012.49.40%20AM.png)
376+
![ ](resources/automl_stockout_img/Image%20new%203%202019-03-25%20at%2012.49.40%20AM.png)
366377

367378
Thus the evaluation results tell us that the model we built can:
368379

@@ -373,4 +384,4 @@ Thus the evaluation results tell us that the model we built can:
373384

374385
Thus, with such a machine learning model your business could definitely expect time savings and revenue gain by predicting stock-outs.
375386

376-
Note: You can always improve this model iteratively by adding business relevant features.
387+
Note: You can always improve this model iteratively by adding business relevant features.

0 commit comments

Comments
 (0)