@@ -298,31 +298,39 @@ You could select either [GCS](https://cloud.google.com/storage/) or [BigQuery](h
298
298
299
299
1 . Enable [ AutoML Tables] ( https://cloud.google.com/automl-tables/docs/quickstart#before_you_begin ) on GCP.
300
300
301
- 2 . Visit the [ AutoML Tables UI] ( https://console.cloud.google.com/automl-tables ) to begin the process of creating your dataset and training your model. \
302
- > ![ alt text] ( https://storage.cloud.google.com/cloud-ml-data/automl-tables/notebooks/automl_stockout_img/Image%201%202019-03-13%20at%201.02.53%20PM.png )
301
+ 2 . Visit the [ AutoML Tables UI] ( https://console.cloud.google.com/automl-tables ) to begin the process of creating your dataset and training your model.
302
+
303
+ ![ ] ( resources/automl_stockout_img/Image%201%202019-03-13%20at%201.02.53%20PM.png )
303
304
304
305
3 . Import your dataset or the dataset you downloaded in the last section \
305
- Click <+New Dataset> → Dataset Name <StockOut > → Click Create Dataset \
306
- > ![ alt text] ( https://storage.cloud.google.com/cloud-ml-data/automl-tables/notebooks/automl_stockout_img/Image%202%202019-03-13%20at%201.05.17%20PM.png )
306
+ Click <+New Dataset> → Dataset Name <StockOut > → Click Create Dataset
307
+
308
+ ![ ] ( resources/automl_stockout_img/Image%202%202019-03-13%20at%201.05.17%20PM.png )
307
309
308
310
4 . You can import data from BigQuery or GCS bucket \
309
311
a. For BigQuery enter your GCP project ID, Dataset ID and Table ID \
310
- After specifying dataset click import dataset \
311
- > ![ alt text] https://storage.cloud.google.com/cloud-ml-data/automl-tables/notebooks/automl_stockout_img/Image%203%202019-03-13%20at%201.08.44%20PM.png )
312
+ After specifying dataset click import dataset
313
+
314
+ ![ ] ( resources/automl_stockout_img/Image%203%202019-03-13%20at%201.08.44%20PM.png )
315
+
312
316
b. For GCS enter the GCS object location by clicking on BROWSE \
313
- After specifying dataset click import dataset \
314
- > ![ alt text] ( https://storage.cloud.google.com/cloud-ml-data/automl-tables/notebooks/automl_stockout_img/Image%204%202019-03-13%20at%201.09.56%20PM.png )
317
+ After specifying dataset click import dataset
318
+
319
+ ![ ] ( resources/automl_stockout_img/Image%204%202019-03-13%20at%201.09.56%20PM.png )
320
+
315
321
Depending on the size of the dataset this import can take some time.
316
322
317
323
5 . Once the import is complete you can set the schema of the imported dataset based on your business understanding of the data \
318
324
a. Select Label i.e. Stockout \
319
325
b. Select Variable Type for all features \
320
- c. Click Continue \
321
- > ![ alt text] ( https://storage.cloud.google.com/cloud-ml-data/automl-tables/notebooks/automl_stockout_img/Image%206%202019-03-13%20at%201.20.57%20PM.png )
326
+ c. Click Continue
327
+
328
+ ![ ] ( resources/automl_stockout_img/Image%206%202019-03-13%20at%201.20.57%20PM.png )
322
329
323
330
6 . The imported dataset is now analyzed \
324
- This helps you analyze the size of your dataset, dig into missing values if any, calculate correlation, mean and standard deviation. If this data quality looks good to you then we can move on to the next tab i.e. train. \
325
- > ![ alt text] ( https://storage.cloud.google.com/cloud-ml-data/automl-tables/notebooks/automl_stockout_img/Image%20new%201%202019-03-25%20at%2012.43.13%20AM.png )
331
+ This helps you analyze the size of your dataset, dig into missing values if any, calculate correlation, mean and standard deviation. If this data quality looks good to you then we can move on to the next tab i.e. train.
332
+
333
+ ![ ] ( resources/automl_stockout_img/Image%20new%201%202019-03-25%20at%2012.43.13%20AM.png )
326
334
327
335
7 . Train \
328
336
a. Select a model name \
@@ -331,10 +339,11 @@ This helps you analyze the size of your dataset, dig into missing values if any,
331
339
d. Select optimization objectives. Such as: ROC, Log Loss or PR curve \
332
340
(As our data is imbalances we use PR curve as our optimization metric) \
333
341
e. Click TRAIN \
334
- f. Training the model can take some time \
335
- ![ alt text] ( https://storage.cloud.google.com/cloud-ml-data/automl-tables/notebooks/automl_stockout_img/Image%208%202019-03-13%20at%201.34.08%20PM.png )
342
+ f. Training the model can take some time
343
+
344
+ ![ ] ( resources/automl_stockout_img/Image%208%202019-03-13%20at%201.34.08%20PM.png )
336
345
337
- ![ alt text ] ( https://storage.cloud.google.com/cloud-ml-data/automl-tables/notebooks /automl_stockout_img/Image%20new%202%202019-03-25%20at%2012.44.18%20AM.png)
346
+ ![ ] ( resources /automl_stockout_img/Image%20new%202%202019-03-25%20at%2012.44.18%20AM.png)
338
347
339
348
8 . Once the model is trained you can click on the evaluate tab \
340
349
This tab gives you stats for model evaluation \
@@ -343,16 +352,18 @@ This tab gives you stats for model evaluation \
343
352
Area Under ROC Curve: 0.893 \
344
353
Accuracy: 92.5% \
345
354
Log Loss: 0.217 \
346
- Selecting the threshold lets you set a desired precision and recall on your predictions. \
347
- > ![ alt text] ( https://storage.cloud.google.com/cloud-ml-data/automl-tables/notebooks/automl_stockout_img/Image%20new%203%202019-03-25%20at%2012.49.40%20AM.png )
355
+ Selecting the threshold lets you set a desired precision and recall on your predictions.
356
+
357
+ ![ ] ( resources/automl_stockout_img/Image%20new%203%202019-03-25%20at%2012.49.40%20AM.png )
348
358
349
359
9 . Using the model created let's use batch prediction to predict stock-out \
350
360
a. Batch prediction data inputs could come from BigQuery or your GCS bucket. \
351
361
b. Select the GCS bucket to store the results of your batch prediction \
352
- c. Click Send Batch Predictions \
353
- > ![ alt text] ( https://storage.cloud.google.com/cloud-ml-data/automl-tables/notebooks/automl_stockout_img/Image%2012%202019-03-13%20at%201.56.43%20PM.png )
362
+ c. Click Send Batch Predictions
363
+
364
+ ![ ] ( resources/automl_stockout_img/Image%2012%202019-03-13%20at%201.56.43%20PM.png )
354
365
355
- > ![ alt text ] ( https://storage.cloud.google.com/cloud-ml-data/automl-tables/notebooks /automl_stockout_img/Image%2013%202019-03-13%20at%201.59.18%20PM.png)
366
+ ![ ] ( resources /automl_stockout_img/Image%2013%202019-03-13%20at%201.59.18%20PM.png)
356
367
357
368
358
369
## Building the model using AutoML Tables Python Client Library
@@ -362,7 +373,7 @@ In this notebook, you will learn how to build the same model as you have done on
362
373
363
374
## Evaluation results and business impact
364
375
365
- > ![ alt text ] ( https://storage.cloud.google.com/cloud-ml-data/automl-tables/notebooks /automl_stockout_img/Image%20new%203%202019-03-25%20at%2012.49.40%20AM.png)
376
+ ![ ] ( resources /automl_stockout_img/Image%20new%203%202019-03-25%20at%2012.49.40%20AM.png)
366
377
367
378
Thus the evaluation results tell us that the model we built can:
368
379
@@ -373,4 +384,4 @@ Thus the evaluation results tell us that the model we built can:
373
384
374
385
Thus, with such a machine learning model your business could definitely expect time savings and revenue gain by predicting stock-outs.
375
386
376
- Note: You can always improve this model iteratively by adding business relevant features.
387
+ Note: You can always improve this model iteratively by adding business relevant features.
0 commit comments