forked from open-telemetry/opentelemetry-python
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsampling.py
128 lines (102 loc) · 3.6 KB
/
sampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
# Copyright 2019, OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import abc
from typing import Dict, Mapping, Optional, Sequence
# pylint: disable=unused-import
from opentelemetry.trace import Link, SpanContext
from opentelemetry.util.types import AttributeValue
class Decision:
"""A sampling decision as applied to a newly-created Span.
Args:
sampled: Whether the `Span` should be sampled.
attributes: Attributes to add to the `Span`.
"""
def __repr__(self) -> str:
return "{}({}, attributes={})".format(
type(self).__name__, str(self.sampled), str(self.attributes)
)
def __init__(
self,
sampled: bool = False,
attributes: Mapping[str, "AttributeValue"] = None,
) -> None:
self.sampled: bool
self.attributes: Dict[str, "AttributeValue"]
self.sampled = sampled
if attributes is None:
self.attributes = {}
else:
self.attributes = dict(attributes)
class Sampler(abc.ABC):
@abc.abstractmethod
def should_sample(
self,
parent_context: Optional["SpanContext"],
trace_id: int,
span_id: int,
name: str,
links: Optional[Sequence["Link"]] = None,
) -> "Decision":
pass
class StaticSampler(Sampler):
"""Sampler that always returns the same decision."""
def __init__(self, decision: "Decision"):
self.decision = decision
def should_sample(
self,
parent_context: Optional["SpanContext"],
trace_id: int,
span_id: int,
name: str,
links: Optional[Sequence["Link"]] = None,
) -> "Decision":
return self.decision
class ProbabilitySampler(Sampler):
def __init__(self, rate: float):
self._rate = rate
self._bound = self.get_bound_for_rate(self._rate)
# The sampler checks the last 8 bytes of the trace ID to decide whether to
# sample a given trace.
CHECK_BYTES = 0xFFFFFFFFFFFFFFFF
@classmethod
def get_bound_for_rate(cls, rate: float) -> int:
return round(rate * (cls.CHECK_BYTES + 1))
@property
def rate(self) -> float:
return self._rate
@rate.setter
def rate(self, new_rate: float) -> None:
self._rate = new_rate
self._bound = self.get_bound_for_rate(self._rate)
@property
def bound(self) -> int:
return self._bound
def should_sample(
self,
parent_context: Optional["SpanContext"],
trace_id: int,
span_id: int,
name: str,
links: Optional[Sequence["Link"]] = None,
) -> "Decision":
if parent_context is not None:
return Decision(parent_context.trace_options.recorded, {})
return Decision(trace_id & self.CHECK_BYTES < self.bound, {})
# Samplers that ignore the parent sampling decision and never/always sample.
ALWAYS_OFF = StaticSampler(Decision(False))
ALWAYS_ON = StaticSampler(Decision(True))
# Samplers that respect the parent sampling decision, but otherwise
# never/always sample.
DEFAULT_OFF = ProbabilitySampler(0.0)
DEFAULT_ON = ProbabilitySampler(1.0)