forked from pymc-devs/pymc-extras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmarginal_model.py
872 lines (715 loc) · 35.4 KB
/
marginal_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
import warnings
from typing import Sequence, Union
import numpy as np
import pymc
import pytensor.tensor as pt
from arviz import InferenceData, dict_to_dataset
from pymc import SymbolicRandomVariable
from pymc.backends.arviz import coords_and_dims_for_inferencedata, dataset_to_point_list
from pymc.distributions.discrete import Bernoulli, Categorical, DiscreteUniform
from pymc.distributions.transforms import Chain
from pymc.logprob.abstract import _logprob
from pymc.logprob.basic import conditional_logp, logp
from pymc.logprob.transforms import IntervalTransform
from pymc.model import Model
from pymc.pytensorf import compile_pymc, constant_fold
from pymc.util import RandomState, _get_seeds_per_chain, treedict
from pytensor import Mode, scan
from pytensor.compile import SharedVariable
from pytensor.graph import Constant, FunctionGraph, ancestors, clone_replace
from pytensor.graph.replace import graph_replace, vectorize_graph
from pytensor.scan import map as scan_map
from pytensor.tensor import TensorType, TensorVariable
from pytensor.tensor.elemwise import DimShuffle, Elemwise
from pytensor.tensor.shape import Shape
from pytensor.tensor.special import log_softmax
__all__ = ["MarginalModel", "marginalize"]
from pymc_experimental.distributions import DiscreteMarkovChain
ModelRVs = TensorVariable | Sequence[TensorVariable] | str | Sequence[str]
class MarginalModel(Model):
"""Subclass of PyMC Model that implements functionality for automatic
marginalization of variables in the logp transformation
After defining the full Model, the `marginalize` method can be used to indicate a
subset of variables that should be marginalized
Notes
-----
Marginalization functionality is still very restricted. Only finite discrete
variables can be marginalized. Deterministics and Potentials cannot be conditionally
dependent on the marginalized variables.
Furthermore, not all instances of such variables can be marginalized. If a variable
has batched dimensions, it is required that any conditionally dependent variables
use information from an individual batched dimension. In other words, the graph
connecting the marginalized variable(s) to the dependent variable(s) must be
composed strictly of Elemwise Operations. This is necessary to ensure an efficient
logprob graph can be generated. If you want to bypass this restriction you can
separate each dimension of the marginalized variable into the scalar components
and then stack them together. Note that such graphs will grow exponentially in the
number of marginalized variables.
For the same reason, it's not possible to marginalize RVs with multivariate
dependent RVs.
Examples
--------
Marginalize over a single variable
.. code-block:: python
import pymc as pm
from pymc_experimental import MarginalModel
with MarginalModel() as m:
p = pm.Beta("p", 1, 1)
x = pm.Bernoulli("x", p=p, shape=(3,))
y = pm.Normal("y", pm.math.switch(x, -10, 10), observed=[10, 10, -10])
m.marginalize([x])
idata = pm.sample()
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.marginalized_rvs = []
self._marginalized_named_vars_to_dims = {}
def _delete_rv_mappings(self, rv: TensorVariable) -> None:
"""Remove all model mappings referring to rv
This can be used to "delete" an RV from a model
"""
assert rv in self.basic_RVs, "rv is not part of the Model"
name = rv.name
self.named_vars.pop(name)
if name in self.named_vars_to_dims:
self.named_vars_to_dims.pop(name)
value = self.rvs_to_values.pop(rv)
self.values_to_rvs.pop(value)
self.rvs_to_transforms.pop(rv)
if rv in self.free_RVs:
self.free_RVs.remove(rv)
self.rvs_to_initial_values.pop(rv)
else:
self.observed_RVs.remove(rv)
def _transfer_rv_mappings(self, old_rv: TensorVariable, new_rv: TensorVariable) -> None:
"""Transfer model mappings from old_rv to new_rv"""
assert old_rv in self.basic_RVs, "old_rv is not part of the Model"
assert new_rv not in self.basic_RVs, "new_rv is already part of the Model"
self.named_vars.pop(old_rv.name)
new_rv.name = old_rv.name
self.named_vars[new_rv.name] = new_rv
if old_rv in self.named_vars_to_dims:
self._RV_dims[new_rv] = self._RV_dims.pop(old_rv)
value = self.rvs_to_values.pop(old_rv)
self.rvs_to_values[new_rv] = value
self.values_to_rvs[value] = new_rv
self.rvs_to_transforms[new_rv] = self.rvs_to_transforms.pop(old_rv)
if old_rv in self.free_RVs:
index = self.free_RVs.index(old_rv)
self.free_RVs.pop(index)
self.free_RVs.insert(index, new_rv)
self.rvs_to_initial_values[new_rv] = self.rvs_to_initial_values.pop(old_rv)
elif old_rv in self.observed_RVs:
index = self.observed_RVs.index(old_rv)
self.observed_RVs.pop(index)
self.observed_RVs.insert(index, new_rv)
def _marginalize(self, user_warnings=False):
fg = FunctionGraph(outputs=self.basic_RVs + self.marginalized_rvs, clone=False)
toposort = fg.toposort()
rvs_left_to_marginalize = self.marginalized_rvs
for rv_to_marginalize in sorted(
self.marginalized_rvs,
key=lambda rv: toposort.index(rv.owner),
reverse=True,
):
# Check that no deterministics or potentials dependend on the rv to marginalize
for det in self.deterministics:
if is_conditional_dependent(
det, rv_to_marginalize, self.basic_RVs + rvs_left_to_marginalize
):
raise NotImplementedError(
f"Cannot marginalize {rv_to_marginalize} due to dependent Deterministic {det}"
)
for pot in self.potentials:
if is_conditional_dependent(
pot, rv_to_marginalize, self.basic_RVs + rvs_left_to_marginalize
):
raise NotImplementedError(
f"Cannot marginalize {rv_to_marginalize} due to dependent Potential {pot}"
)
old_rvs, new_rvs = replace_finite_discrete_marginal_subgraph(
fg, rv_to_marginalize, self.basic_RVs + rvs_left_to_marginalize
)
if user_warnings and len(new_rvs) > 2:
warnings.warn(
"There are multiple dependent variables in a FiniteDiscreteMarginalRV. "
f"Their joint logp terms will be assigned to the first RV: {old_rvs[1]}",
UserWarning,
)
rvs_left_to_marginalize.remove(rv_to_marginalize)
for old_rv, new_rv in zip(old_rvs, new_rvs):
new_rv.name = old_rv.name
if old_rv in self.marginalized_rvs:
idx = self.marginalized_rvs.index(old_rv)
self.marginalized_rvs.pop(idx)
self.marginalized_rvs.insert(idx, new_rv)
if old_rv in self.basic_RVs:
self._transfer_rv_mappings(old_rv, new_rv)
if user_warnings:
# Interval transforms for dependent variable won't work for non-constant bounds because
# the RV inputs are now different and may depend on another RV that also depends on the
# same marginalized RV
transform = self.rvs_to_transforms[new_rv]
if isinstance(transform, IntervalTransform) or (
isinstance(transform, Chain)
and any(
isinstance(tr, IntervalTransform) for tr in transform.transform_list
)
):
warnings.warn(
f"The transform {transform} for the variable {old_rv}, which depends on the "
f"marginalized {rv_to_marginalize} may no longer work if bounds depended on other variables.",
UserWarning,
)
return self
def _logp(self, *args, **kwargs):
return super().logp(*args, **kwargs)
def logp(self, vars=None, **kwargs):
m = self.clone()._marginalize()
if vars is not None:
if not isinstance(vars, Sequence):
vars = (vars,)
vars = [m[var.name] for var in vars]
return m._logp(vars=vars, **kwargs)
@staticmethod
def from_model(model: Union[Model, "MarginalModel"]) -> "MarginalModel":
new_model = MarginalModel(coords=model.coords)
if isinstance(model, MarginalModel):
marginalized_rvs = model.marginalized_rvs
marginalized_named_vars_to_dims = model._marginalized_named_vars_to_dims
else:
marginalized_rvs = []
marginalized_named_vars_to_dims = {}
model_vars = model.basic_RVs + model.potentials + model.deterministics + marginalized_rvs
data_vars = [var for name, var in model.named_vars.items() if var not in model_vars]
vars = model_vars + data_vars
cloned_vars = clone_replace(vars)
vars_to_clone = {var: cloned_var for var, cloned_var in zip(vars, cloned_vars)}
new_model.vars_to_clone = vars_to_clone
new_model.named_vars = treedict(
{name: vars_to_clone[var] for name, var in model.named_vars.items()}
)
new_model.named_vars_to_dims = model.named_vars_to_dims
new_model.values_to_rvs = {vv: vars_to_clone[rv] for vv, rv in model.values_to_rvs.items()}
new_model.rvs_to_values = {vars_to_clone[rv]: vv for rv, vv in model.rvs_to_values.items()}
new_model.rvs_to_transforms = {
vars_to_clone[rv]: tr for rv, tr in model.rvs_to_transforms.items()
}
new_model.rvs_to_initial_values = {
vars_to_clone[rv]: iv for rv, iv in model.rvs_to_initial_values.items()
}
new_model.free_RVs = [vars_to_clone[rv] for rv in model.free_RVs]
new_model.observed_RVs = [vars_to_clone[rv] for rv in model.observed_RVs]
new_model.potentials = [vars_to_clone[pot] for pot in model.potentials]
new_model.deterministics = [vars_to_clone[det] for det in model.deterministics]
new_model.marginalized_rvs = [vars_to_clone[rv] for rv in marginalized_rvs]
new_model._marginalized_named_vars_to_dims = marginalized_named_vars_to_dims
return new_model
def clone(self):
return self.from_model(self)
def marginalize(
self,
rvs_to_marginalize: ModelRVs,
):
if not isinstance(rvs_to_marginalize, Sequence):
rvs_to_marginalize = (rvs_to_marginalize,)
rvs_to_marginalize = [
self[var] if isinstance(var, str) else var for var in rvs_to_marginalize
]
for rv_to_marginalize in rvs_to_marginalize:
if rv_to_marginalize not in self.free_RVs:
raise ValueError(
f"Marginalized RV {rv_to_marginalize} is not a free RV in the model"
)
rv_op = rv_to_marginalize.owner.op
if isinstance(rv_op, DiscreteMarkovChain):
if rv_op.n_lags > 1:
raise NotImplementedError(
"Marginalization for DiscreteMarkovChain with n_lags > 1 is not supported"
)
if rv_to_marginalize.owner.inputs[0].type.ndim > 2:
raise NotImplementedError(
"Marginalization for DiscreteMarkovChain with non-matrix transition probability is not supported"
)
elif not isinstance(rv_op, (Bernoulli, Categorical, DiscreteUniform)):
raise NotImplementedError(
f"Marginalization of RV with distribution {rv_to_marginalize.owner.op} is not supported"
)
if rv_to_marginalize.name in self.named_vars_to_dims:
dims = self.named_vars_to_dims[rv_to_marginalize.name]
self._marginalized_named_vars_to_dims[rv_to_marginalize.name] = dims
self._delete_rv_mappings(rv_to_marginalize)
self.marginalized_rvs.append(rv_to_marginalize)
# Raise errors and warnings immediately
self.clone()._marginalize(user_warnings=True)
def _to_transformed(self):
"Create a function from the untransformed space to the transformed space"
transformed_rvs = []
transformed_names = []
for rv in self.free_RVs:
transform = self.rvs_to_transforms.get(rv)
if transform is None:
transformed_rvs.append(rv)
transformed_names.append(rv.name)
else:
transformed_rv = transform.forward(rv, *rv.owner.inputs)
transformed_rvs.append(transformed_rv)
transformed_names.append(self.rvs_to_values[rv].name)
fn = self.compile_fn(inputs=self.free_RVs, outs=transformed_rvs)
return fn, transformed_names
def unmarginalize(self, rvs_to_unmarginalize: Sequence[TensorVariable | str]):
for rv in rvs_to_unmarginalize:
if isinstance(rv, str):
rv = self[rv]
self.marginalized_rvs.remove(rv)
if rv.name in self._marginalized_named_vars_to_dims:
dims = self._marginalized_named_vars_to_dims.pop(rv.name)
else:
dims = None
self.register_rv(rv, name=rv.name, dims=dims)
def recover_marginals(
self,
idata: InferenceData,
var_names: Sequence[str] | None = None,
return_samples: bool = True,
extend_inferencedata: bool = True,
random_seed: RandomState = None,
):
"""Computes posterior log-probabilities and samples of marginalized variables
conditioned on parameters of the model given InferenceData with posterior group
When there are multiple marginalized variables, each marginalized variable is
conditioned on both the parameters and the other variables still marginalized
All log-probabilities are within the transformed space
Parameters
----------
idata : InferenceData
InferenceData with posterior group
var_names : sequence of str, optional
List of variable names for which to compute posterior log-probabilities and samples. Defaults to all marginalized variables
return_samples : bool, default True
If True, also return samples of the marginalized variables
extend_inferencedata : bool, default True
Whether to extend the original InferenceData or return a new one
random_seed: int, array-like of int or SeedSequence, optional
Seed used to generating samples
Returns
-------
idata : InferenceData
InferenceData with where a lp_{varname} and {varname} for each marginalized variable in var_names added to the posterior group
.. code-block:: python
import pymc as pm
from pymc_experimental import MarginalModel
with MarginalModel() as m:
p = pm.Beta("p", 1, 1)
x = pm.Bernoulli("x", p=p, shape=(3,))
y = pm.Normal("y", pm.math.switch(x, -10, 10), observed=[10, 10, -10])
m.marginalize([x])
idata = pm.sample()
m.recover_marginals(idata, var_names=["x"])
"""
if var_names is None:
var_names = [var.name for var in self.marginalized_rvs]
var_names = [var if isinstance(var, str) else var.name for var in var_names]
vars_to_recover = [v for v in self.marginalized_rvs if v.name in var_names]
missing_names = [v.name for v in vars_to_recover if v not in self.marginalized_rvs]
if missing_names:
raise ValueError(f"Unrecognized var_names: {missing_names}")
if return_samples and random_seed is not None:
seeds = _get_seeds_per_chain(random_seed, len(vars_to_recover))
else:
seeds = [None] * len(vars_to_recover)
posterior = idata.posterior
# Remove Deterministics
posterior_values = posterior[
[rv.name for rv in self.free_RVs if rv not in self.marginalized_rvs]
]
sample_dims = ("chain", "draw")
posterior_pts, stacked_dims = dataset_to_point_list(posterior_values, sample_dims)
# Handle Transforms
transform_fn, transform_names = self._to_transformed()
def transform_input(inputs):
return dict(zip(transform_names, transform_fn(inputs)))
posterior_pts = [transform_input(vs) for vs in posterior_pts]
rv_dict = {}
rv_dims = {}
for seed, marginalized_rv in zip(seeds, vars_to_recover):
supported_dists = (Bernoulli, Categorical, DiscreteUniform)
if not isinstance(marginalized_rv.owner.op, supported_dists):
raise NotImplementedError(
f"RV with distribution {marginalized_rv.owner.op} cannot be recovered. "
f"Supported distribution include {supported_dists}"
)
m = self.clone()
marginalized_rv = m.vars_to_clone[marginalized_rv]
m.unmarginalize([marginalized_rv])
dependent_vars = find_conditional_dependent_rvs(marginalized_rv, m.basic_RVs)
joint_logps = m.logp(vars=[marginalized_rv] + dependent_vars, sum=False)
marginalized_value = m.rvs_to_values[marginalized_rv]
other_values = [v for v in m.value_vars if v is not marginalized_value]
# Handle batch dims for marginalized value and its dependent RVs
marginalized_logp, *dependent_logps = joint_logps
joint_logp = marginalized_logp + _add_reduce_batch_dependent_logps(
marginalized_rv.type, dependent_logps
)
rv_shape = constant_fold(tuple(marginalized_rv.shape), raise_not_constant=False)
rv_domain = get_domain_of_finite_discrete_rv(marginalized_rv)
rv_domain_tensor = pt.moveaxis(
pt.full(
(*rv_shape, len(rv_domain)),
rv_domain,
dtype=marginalized_rv.dtype,
),
-1,
0,
)
joint_logps = vectorize_graph(
joint_logp,
replace={marginalized_value: rv_domain_tensor},
)
joint_logps = pt.moveaxis(joint_logps, 0, -1)
rv_loglike_fn = None
joint_logps_norm = log_softmax(joint_logps, axis=-1)
if return_samples:
sample_rv_outs = pymc.Categorical.dist(logit_p=joint_logps)
if isinstance(marginalized_rv.owner.op, DiscreteUniform):
sample_rv_outs += rv_domain[0]
rv_loglike_fn = compile_pymc(
inputs=other_values,
outputs=[joint_logps_norm, sample_rv_outs],
on_unused_input="ignore",
random_seed=seed,
)
else:
rv_loglike_fn = compile_pymc(
inputs=other_values,
outputs=joint_logps_norm,
on_unused_input="ignore",
random_seed=seed,
)
logvs = [rv_loglike_fn(**vs) for vs in posterior_pts]
logps = None
samples = None
if return_samples:
logps, samples = zip(*logvs)
logps = np.array(logps)
samples = np.array(samples)
rv_dict[marginalized_rv.name] = samples.reshape(
tuple(len(coord) for coord in stacked_dims.values()) + samples.shape[1:],
)
else:
logps = np.array(logvs)
rv_dict["lp_" + marginalized_rv.name] = logps.reshape(
tuple(len(coord) for coord in stacked_dims.values()) + logps.shape[1:],
)
if marginalized_rv.name in m.named_vars_to_dims:
rv_dims[marginalized_rv.name] = list(m.named_vars_to_dims[marginalized_rv.name])
rv_dims["lp_" + marginalized_rv.name] = rv_dims[marginalized_rv.name] + [
"lp_" + marginalized_rv.name + "_dim"
]
coords, dims = coords_and_dims_for_inferencedata(self)
dims.update(rv_dims)
rv_dataset = dict_to_dataset(
rv_dict,
library=pymc,
dims=dims,
coords=coords,
default_dims=list(sample_dims),
skip_event_dims=True,
)
if extend_inferencedata:
idata.posterior = idata.posterior.assign(rv_dataset)
return idata
else:
return rv_dataset
def marginalize(model: Model, rvs_to_marginalize: ModelRVs) -> MarginalModel:
"""Marginalize a subset of variables in a PyMC model.
This creates a class of `MarginalModel` from an existing `Model`, with the specified
variables marginalized.
See documentation for `MarginalModel` for more information.
Parameters
----------
model : Model
PyMC model to marginalize. Original variables well be cloned.
rvs_to_marginalize : Sequence[TensorVariable]
Variables to marginalize in the returned model.
Returns
-------
marginal_model: MarginalModel
Marginal model with the specified variables marginalized.
"""
if not isinstance(rvs_to_marginalize, tuple | list):
rvs_to_marginalize = (rvs_to_marginalize,)
rvs_to_marginalize = [rv if isinstance(rv, str) else rv.name for rv in rvs_to_marginalize]
marginal_model = MarginalModel.from_model(model)
marginal_model.marginalize(rvs_to_marginalize)
return marginal_model
class MarginalRV(SymbolicRandomVariable):
"""Base class for Marginalized RVs"""
class FiniteDiscreteMarginalRV(MarginalRV):
"""Base class for Finite Discrete Marginalized RVs"""
class DiscreteMarginalMarkovChainRV(MarginalRV):
"""Base class for Discrete Marginal Markov Chain RVs"""
def static_shape_ancestors(vars):
"""Identify ancestors Shape Ops of static shapes (therefore constant in a valid graph)."""
return [
var
for var in ancestors(vars)
if (
var.owner
and isinstance(var.owner.op, Shape)
# All static dims lengths of Shape input are known
and None not in var.owner.inputs[0].type.shape
)
]
def find_conditional_input_rvs(output_rvs, all_rvs):
"""Find conditionally indepedent input RVs."""
blockers = [other_rv for other_rv in all_rvs if other_rv not in output_rvs]
blockers += static_shape_ancestors(tuple(all_rvs) + tuple(output_rvs))
return [
var
for var in ancestors(output_rvs, blockers=blockers)
if var in blockers
or (var.owner is None and not isinstance(var, (Constant, SharedVariable)))
]
def is_conditional_dependent(
dependent_rv: TensorVariable, dependable_rv: TensorVariable, all_rvs
) -> bool:
"""Check if dependent_rv is conditionall dependent on dependable_rv,
given all conditionally independent all_rvs"""
return dependable_rv in find_conditional_input_rvs((dependent_rv,), all_rvs)
def find_conditional_dependent_rvs(dependable_rv, all_rvs):
"""Find rvs than depend on dependable"""
return [
rv
for rv in all_rvs
if (rv is not dependable_rv and is_conditional_dependent(rv, dependable_rv, all_rvs))
]
def is_elemwise_subgraph(rv_to_marginalize, other_input_rvs, output_rvs):
# TODO: No need to consider apply nodes outside the subgraph...
fg = FunctionGraph(outputs=output_rvs, clone=False)
non_elemwise_blockers = [
o
for node in fg.apply_nodes
if not (
isinstance(node.op, Elemwise)
# Allow expand_dims on the left
or (
isinstance(node.op, DimShuffle)
and not node.op.drop
and node.op.shuffle == sorted(node.op.shuffle)
)
)
for o in node.outputs
]
blocker_candidates = [rv_to_marginalize] + other_input_rvs + non_elemwise_blockers
blockers = [var for var in blocker_candidates if var not in output_rvs]
truncated_inputs = [
var
for var in ancestors(output_rvs, blockers=blockers)
if (
var in blockers
or (var.owner is None and not isinstance(var, (Constant, SharedVariable)))
)
]
# Check that we reach the marginalized rv following a pure elemwise graph
if rv_to_marginalize not in truncated_inputs:
return False
# Check that none of the truncated inputs depends on the marginalized_rv
other_truncated_inputs = [inp for inp in truncated_inputs if inp is not rv_to_marginalize]
# TODO: We don't need to go all the way to the root variables
if rv_to_marginalize in ancestors(
other_truncated_inputs, blockers=[rv_to_marginalize, *other_input_rvs]
):
return False
return True
from pytensor.graph.basic import graph_inputs
def collect_shared_vars(outputs, blockers):
return [
inp for inp in graph_inputs(outputs, blockers=blockers) if isinstance(inp, SharedVariable)
]
def replace_finite_discrete_marginal_subgraph(fgraph, rv_to_marginalize, all_rvs):
# TODO: This should eventually be integrated in a more general routine that can
# identify other types of supported marginalization, of which finite discrete
# RVs is just one
dependent_rvs = find_conditional_dependent_rvs(rv_to_marginalize, all_rvs)
if not dependent_rvs:
raise ValueError(f"No RVs depend on marginalized RV {rv_to_marginalize}")
ndim_supp = {rv.owner.op.ndim_supp for rv in dependent_rvs}
if len(ndim_supp) != 1:
raise NotImplementedError(
"Marginalization with dependent variables of different support dimensionality not implemented"
)
[ndim_supp] = ndim_supp
if ndim_supp > 0:
raise NotImplementedError("Marginalization with dependent Multivariate RVs not implemented")
marginalized_rv_input_rvs = find_conditional_input_rvs([rv_to_marginalize], all_rvs)
dependent_rvs_input_rvs = [
rv
for rv in find_conditional_input_rvs(dependent_rvs, all_rvs)
if rv is not rv_to_marginalize
]
# If the marginalized RV has batched dimensions, check that graph between
# marginalized RV and dependent RVs is composed strictly of Elemwise Operations.
# This implies (?) that the dimensions are completely independent and a logp graph
# can ultimately be generated that is proportional to the support domain and not
# to the variables dimensions
# We don't need to worry about this if the RV is scalar.
if np.prod(constant_fold(tuple(rv_to_marginalize.shape), raise_not_constant=False)) != 1:
if not is_elemwise_subgraph(rv_to_marginalize, dependent_rvs_input_rvs, dependent_rvs):
raise NotImplementedError(
"The subgraph between a marginalized RV and its dependents includes non Elemwise operations. "
"This is currently not supported",
)
input_rvs = [*marginalized_rv_input_rvs, *dependent_rvs_input_rvs]
rvs_to_marginalize = [rv_to_marginalize, *dependent_rvs]
outputs = rvs_to_marginalize
# We are strict about shared variables in SymbolicRandomVariables
inputs = input_rvs + collect_shared_vars(rvs_to_marginalize, blockers=input_rvs)
if isinstance(rv_to_marginalize.owner.op, DiscreteMarkovChain):
marginalize_constructor = DiscreteMarginalMarkovChainRV
else:
marginalize_constructor = FiniteDiscreteMarginalRV
marginalization_op = marginalize_constructor(
inputs=inputs,
outputs=outputs,
ndim_supp=ndim_supp,
)
marginalized_rvs = marginalization_op(*inputs)
fgraph.replace_all(tuple(zip(rvs_to_marginalize, marginalized_rvs)))
return rvs_to_marginalize, marginalized_rvs
def get_domain_of_finite_discrete_rv(rv: TensorVariable) -> tuple[int, ...]:
op = rv.owner.op
dist_params = rv.owner.op.dist_params(rv.owner)
if isinstance(op, Bernoulli):
return (0, 1)
elif isinstance(op, Categorical):
[p_param] = dist_params
return tuple(range(pt.get_vector_length(p_param)))
elif isinstance(op, DiscreteUniform):
lower, upper = constant_fold(dist_params)
return tuple(np.arange(lower, upper + 1))
elif isinstance(op, DiscreteMarkovChain):
P, *_ = dist_params
return tuple(range(pt.get_vector_length(P[-1])))
raise NotImplementedError(f"Cannot compute domain for op {op}")
def _add_reduce_batch_dependent_logps(
marginalized_type: TensorType, dependent_logps: Sequence[TensorVariable]
):
"""Add the logps of dependent RVs while reducing extra batch dims relative to `marginalized_type`."""
mbcast = marginalized_type.broadcastable
reduced_logps = []
for dependent_logp in dependent_logps:
dbcast = dependent_logp.type.broadcastable
dim_diff = len(dbcast) - len(mbcast)
mbcast_aligned = (True,) * dim_diff + mbcast
vbcast_axis = [i for i, (m, v) in enumerate(zip(mbcast_aligned, dbcast)) if m and not v]
reduced_logps.append(dependent_logp.sum(vbcast_axis))
return pt.add(*reduced_logps)
@_logprob.register(FiniteDiscreteMarginalRV)
def finite_discrete_marginal_rv_logp(op, values, *inputs, **kwargs):
# Clone the inner RV graph of the Marginalized RV
marginalized_rvs_node = op.make_node(*inputs)
marginalized_rv, *inner_rvs = clone_replace(
op.inner_outputs,
replace={u: v for u, v in zip(op.inner_inputs, marginalized_rvs_node.inputs)},
)
# Obtain the joint_logp graph of the inner RV graph
inner_rv_values = dict(zip(inner_rvs, values))
marginalized_vv = marginalized_rv.clone()
rv_values = inner_rv_values | {marginalized_rv: marginalized_vv}
logps_dict = conditional_logp(rv_values=rv_values, **kwargs)
# Reduce logp dimensions corresponding to broadcasted variables
marginalized_logp = logps_dict.pop(marginalized_vv)
joint_logp = marginalized_logp + _add_reduce_batch_dependent_logps(
marginalized_rv.type, logps_dict.values()
)
# Compute the joint_logp for all possible n values of the marginalized RV. We assume
# each original dimension is independent so that it suffices to evaluate the graph
# n times, once with each possible value of the marginalized RV replicated across
# batched dimensions of the marginalized RV
# PyMC does not allow RVs in the logp graph, even if we are just using the shape
marginalized_rv_shape = constant_fold(tuple(marginalized_rv.shape), raise_not_constant=False)
marginalized_rv_domain = get_domain_of_finite_discrete_rv(marginalized_rv)
marginalized_rv_domain_tensor = pt.moveaxis(
pt.full(
(*marginalized_rv_shape, len(marginalized_rv_domain)),
marginalized_rv_domain,
dtype=marginalized_rv.dtype,
),
-1,
0,
)
try:
joint_logps = vectorize_graph(
joint_logp, replace={marginalized_vv: marginalized_rv_domain_tensor}
)
except Exception:
# Fallback to Scan
def logp_fn(marginalized_rv_const, *non_sequences):
return graph_replace(joint_logp, replace={marginalized_vv: marginalized_rv_const})
joint_logps, _ = scan_map(
fn=logp_fn,
sequences=marginalized_rv_domain_tensor,
non_sequences=[*values, *inputs],
mode=Mode().including("local_remove_check_parameter"),
)
joint_logps = pt.logsumexp(joint_logps, axis=0)
# We have to add dummy logps for the remaining value variables, otherwise PyMC will raise
return joint_logps, *(pt.constant(0),) * (len(values) - 1)
@_logprob.register(DiscreteMarginalMarkovChainRV)
def marginal_hmm_logp(op, values, *inputs, **kwargs):
marginalized_rvs_node = op.make_node(*inputs)
inner_rvs = clone_replace(
op.inner_outputs,
replace={u: v for u, v in zip(op.inner_inputs, marginalized_rvs_node.inputs)},
)
chain_rv, *dependent_rvs = inner_rvs
P, n_steps_, init_dist_, rng = chain_rv.owner.inputs
domain = pt.arange(P.shape[-1], dtype="int32")
# Construct logp in two steps
# Step 1: Compute the probability of the data ("emissions") under every possible state (vec_logp_emission)
# First we need to vectorize the conditional logp graph of the data, in case there are batch dimensions floating
# around. To do this, we need to break the dependency between chain and the init_dist_ random variable. Otherwise,
# PyMC will detect a random variable in the logp graph (init_dist_), that isn't relevant at this step.
chain_value = chain_rv.clone()
dependent_rvs = clone_replace(dependent_rvs, {chain_rv: chain_value})
logp_emissions_dict = conditional_logp(dict(zip(dependent_rvs, values)))
# Reduce and add the batch dims beyond the chain dimension
reduced_logp_emissions = _add_reduce_batch_dependent_logps(
chain_rv.type, logp_emissions_dict.values()
)
# Add a batch dimension for the domain of the chain
chain_shape = constant_fold(tuple(chain_rv.shape))
batch_chain_value = pt.moveaxis(pt.full((*chain_shape, domain.size), domain), -1, 0)
batch_logp_emissions = vectorize_graph(reduced_logp_emissions, {chain_value: batch_chain_value})
# Step 2: Compute the transition probabilities
# This is the "forward algorithm", alpha_t = p(y | s_t) * sum_{s_{t-1}}(p(s_t | s_{t-1}) * alpha_{t-1})
# We do it entirely in logs, though.
# To compute the prior probabilities of each state, we evaluate the logp of the domain (all possible states)
# under the initial distribution. This is robust to everything the user can throw at it.
init_dist_value = init_dist_.type()
logp_init_dist = logp(init_dist_, init_dist_value)
# There is a degerate batch dim for lags=1 (the only supported case),
# that we have to work around, by expanding the batch value and then squeezing it out of the logp
batch_logp_init_dist = vectorize_graph(
logp_init_dist, {init_dist_value: batch_chain_value[:, None, ..., 0]}
).squeeze(1)
log_alpha_init = batch_logp_init_dist + batch_logp_emissions[..., 0]
def step_alpha(logp_emission, log_alpha, log_P):
step_log_prob = pt.logsumexp(log_alpha[:, None] + log_P, axis=0)
return logp_emission + step_log_prob
P_bcast_dims = (len(chain_shape) - 1) - (P.type.ndim - 2)
log_P = pt.shape_padright(pt.log(P), P_bcast_dims)
log_alpha_seq, _ = scan(
step_alpha,
non_sequences=[log_P],
outputs_info=[log_alpha_init],
# Scan needs the time dimension first, and we already consumed the 1st logp computing the initial value
sequences=pt.moveaxis(batch_logp_emissions[..., 1:], -1, 0),
)
# Final logp is just the sum of the last scan state
joint_logp = pt.logsumexp(log_alpha_seq[-1], axis=0)
# If there are multiple emission streams, we have to add dummy logps for the remaining value variables. The first
# return is the joint probability of everything together, but PyMC still expects one logp for each one.
dummy_logps = (pt.constant(0),) * (len(values) - 1)
return joint_logp, *dummy_logps