forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_base.py
563 lines (477 loc) · 18.1 KB
/
test_base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
from datetime import datetime
import numpy as np
import pytest
from pandas.core.dtypes.common import is_extension_array_dtype
import pandas as pd
from pandas import (
DataFrame,
DatetimeIndex,
Index,
MultiIndex,
NaT,
PeriodIndex,
Series,
TimedeltaIndex,
)
import pandas._testing as tm
from pandas.core.groupby.groupby import DataError
from pandas.core.groupby.grouper import Grouper
from pandas.core.indexes.datetimes import date_range
from pandas.core.indexes.period import period_range
from pandas.core.indexes.timedeltas import timedelta_range
from pandas.core.resample import _asfreq_compat
@pytest.fixture(
params=[
"linear",
"time",
"index",
"values",
"nearest",
"zero",
"slinear",
"quadratic",
"cubic",
"barycentric",
"krogh",
"from_derivatives",
"piecewise_polynomial",
"pchip",
"akima",
],
)
def all_1d_no_arg_interpolation_methods(request):
return request.param
@pytest.mark.parametrize("freq", ["2D", "1h"])
@pytest.mark.parametrize(
"index",
[
timedelta_range("1 day", "10 day", freq="D"),
date_range(datetime(2005, 1, 1), datetime(2005, 1, 10), freq="D"),
],
)
def test_asfreq(frame_or_series, index, freq):
obj = frame_or_series(range(len(index)), index=index)
idx_range = date_range if isinstance(index, DatetimeIndex) else timedelta_range
result = obj.resample(freq).asfreq()
new_index = idx_range(obj.index[0], obj.index[-1], freq=freq)
expected = obj.reindex(new_index)
tm.assert_almost_equal(result, expected)
@pytest.mark.parametrize(
"index",
[
timedelta_range("1 day", "10 day", freq="D"),
date_range(datetime(2005, 1, 1), datetime(2005, 1, 10), freq="D"),
],
)
def test_asfreq_fill_value(index):
# test for fill value during resampling, issue 3715
ser = Series(range(len(index)), index=index, name="a")
idx_range = date_range if isinstance(index, DatetimeIndex) else timedelta_range
result = ser.resample("1h").asfreq()
new_index = idx_range(ser.index[0], ser.index[-1], freq="1h")
expected = ser.reindex(new_index)
tm.assert_series_equal(result, expected)
# Explicit cast to float to avoid implicit cast when setting None
frame = ser.astype("float").to_frame("value")
frame.iloc[1] = None
result = frame.resample("1h").asfreq(fill_value=4.0)
new_index = idx_range(frame.index[0], frame.index[-1], freq="1h")
expected = frame.reindex(new_index, fill_value=4.0)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"index",
[
timedelta_range("1 day", "10 day", freq="D"),
date_range(datetime(2005, 1, 1), datetime(2005, 1, 10), freq="D"),
period_range(datetime(2005, 1, 1), datetime(2005, 1, 10), freq="D"),
],
)
def test_resample_interpolate(index):
# GH#12925
df = DataFrame(range(len(index)), index=index)
warn = None
if isinstance(df.index, PeriodIndex):
warn = FutureWarning
msg = "Resampling with a PeriodIndex is deprecated"
with tm.assert_produces_warning(warn, match=msg):
result = df.resample("1min").asfreq().interpolate()
expected = df.resample("1min").interpolate()
tm.assert_frame_equal(result, expected)
def test_resample_interpolate_regular_sampling_off_grid(
all_1d_no_arg_interpolation_methods,
):
pytest.importorskip("scipy")
# GH#21351
index = date_range("2000-01-01 00:01:00", periods=5, freq="2h")
ser = Series(np.arange(5.0), index)
method = all_1d_no_arg_interpolation_methods
# Resample to 1 hour sampling and interpolate with the given method
ser_resampled = ser.resample("1h").interpolate(method)
# Check that none of the resampled values are NaN, except the first one
# which lies 1 minute before the first actual data point
assert np.isnan(ser_resampled.iloc[0])
assert not ser_resampled.iloc[1:].isna().any()
if method not in ["nearest", "zero"]:
# Check that the resampled values are close to the expected values
# except for methods with known inaccuracies
assert np.all(
np.isclose(ser_resampled.values[1:], np.arange(0.5, 4.5, 0.5), rtol=1.0e-1)
)
def test_resample_interpolate_irregular_sampling(all_1d_no_arg_interpolation_methods):
pytest.importorskip("scipy")
# GH#21351
ser = Series(
np.linspace(0.0, 1.0, 5),
index=DatetimeIndex(
[
"2000-01-01 00:00:03",
"2000-01-01 00:00:22",
"2000-01-01 00:00:24",
"2000-01-01 00:00:31",
"2000-01-01 00:00:39",
]
),
)
# Resample to 5 second sampling and interpolate with the given method
ser_resampled = ser.resample("5s").interpolate(all_1d_no_arg_interpolation_methods)
# Check that none of the resampled values are NaN, except the first one
# which lies 3 seconds before the first actual data point
assert np.isnan(ser_resampled.iloc[0])
assert not ser_resampled.iloc[1:].isna().any()
def test_raises_on_non_datetimelike_index():
# this is a non datetimelike index
xp = DataFrame()
msg = (
"Only valid with DatetimeIndex, TimedeltaIndex or PeriodIndex, "
"but got an instance of 'RangeIndex'"
)
with pytest.raises(TypeError, match=msg):
xp.resample("YE")
@pytest.mark.parametrize(
"index",
[
PeriodIndex([], freq="D", name="a"),
DatetimeIndex([], name="a"),
TimedeltaIndex([], name="a"),
],
)
@pytest.mark.parametrize("freq", ["ME", "D", "h"])
def test_resample_empty_series(freq, index, resample_method):
# GH12771 & GH12868
ser = Series(index=index, dtype=float)
if freq == "ME" and isinstance(ser.index, TimedeltaIndex):
msg = (
"Resampling on a TimedeltaIndex requires fixed-duration `freq`, "
"e.g. '24h' or '3D', not <MonthEnd>"
)
with pytest.raises(ValueError, match=msg):
ser.resample(freq)
return
elif freq == "ME" and isinstance(ser.index, PeriodIndex):
# index is PeriodIndex, so convert to corresponding Period freq
freq = "M"
warn = None
if isinstance(ser.index, PeriodIndex):
warn = FutureWarning
msg = "Resampling with a PeriodIndex is deprecated"
with tm.assert_produces_warning(warn, match=msg):
rs = ser.resample(freq)
result = getattr(rs, resample_method)()
if resample_method == "ohlc":
expected = DataFrame(
[], index=ser.index[:0], columns=["open", "high", "low", "close"]
)
expected.index = _asfreq_compat(ser.index, freq)
tm.assert_frame_equal(result, expected, check_dtype=False)
else:
expected = ser.copy()
expected.index = _asfreq_compat(ser.index, freq)
tm.assert_series_equal(result, expected, check_dtype=False)
tm.assert_index_equal(result.index, expected.index)
assert result.index.freq == expected.index.freq
@pytest.mark.parametrize(
"freq",
[
pytest.param("ME", marks=pytest.mark.xfail(reason="Don't know why this fails")),
"D",
"h",
],
)
def test_resample_nat_index_series(freq, resample_method):
# GH39227
ser = Series(range(5), index=PeriodIndex([NaT] * 5, freq=freq))
msg = "Resampling with a PeriodIndex is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
rs = ser.resample(freq)
result = getattr(rs, resample_method)()
if resample_method == "ohlc":
expected = DataFrame(
[], index=ser.index[:0], columns=["open", "high", "low", "close"]
)
tm.assert_frame_equal(result, expected, check_dtype=False)
else:
expected = ser[:0].copy()
tm.assert_series_equal(result, expected, check_dtype=False)
tm.assert_index_equal(result.index, expected.index)
assert result.index.freq == expected.index.freq
@pytest.mark.parametrize(
"index",
[
PeriodIndex([], freq="D", name="a"),
DatetimeIndex([], name="a"),
TimedeltaIndex([], name="a"),
],
)
@pytest.mark.parametrize("freq", ["ME", "D", "h"])
@pytest.mark.parametrize("resample_method", ["count", "size"])
def test_resample_count_empty_series(freq, index, resample_method):
# GH28427
ser = Series(index=index)
if freq == "ME" and isinstance(ser.index, TimedeltaIndex):
msg = (
"Resampling on a TimedeltaIndex requires fixed-duration `freq`, "
"e.g. '24h' or '3D', not <MonthEnd>"
)
with pytest.raises(ValueError, match=msg):
ser.resample(freq)
return
elif freq == "ME" and isinstance(ser.index, PeriodIndex):
# index is PeriodIndex, so convert to corresponding Period freq
freq = "M"
warn = None
if isinstance(ser.index, PeriodIndex):
warn = FutureWarning
msg = "Resampling with a PeriodIndex is deprecated"
with tm.assert_produces_warning(warn, match=msg):
rs = ser.resample(freq)
result = getattr(rs, resample_method)()
index = _asfreq_compat(ser.index, freq)
expected = Series([], dtype="int64", index=index, name=ser.name)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"index", [DatetimeIndex([]), TimedeltaIndex([]), PeriodIndex([], freq="D")]
)
@pytest.mark.parametrize("freq", ["ME", "D", "h"])
def test_resample_empty_dataframe(index, freq, resample_method):
# GH13212
df = DataFrame(index=index)
# count retains dimensions too
if freq == "ME" and isinstance(df.index, TimedeltaIndex):
msg = (
"Resampling on a TimedeltaIndex requires fixed-duration `freq`, "
"e.g. '24h' or '3D', not <MonthEnd>"
)
with pytest.raises(ValueError, match=msg):
df.resample(freq, group_keys=False)
return
elif freq == "ME" and isinstance(df.index, PeriodIndex):
# index is PeriodIndex, so convert to corresponding Period freq
freq = "M"
warn = None
if isinstance(df.index, PeriodIndex):
warn = FutureWarning
msg = "Resampling with a PeriodIndex is deprecated"
with tm.assert_produces_warning(warn, match=msg):
rs = df.resample(freq, group_keys=False)
result = getattr(rs, resample_method)()
if resample_method == "ohlc":
# TODO: no tests with len(df.columns) > 0
mi = MultiIndex.from_product([df.columns, ["open", "high", "low", "close"]])
expected = DataFrame([], index=df.index[:0], columns=mi, dtype=np.float64)
expected.index = _asfreq_compat(df.index, freq)
elif resample_method != "size":
expected = df.copy()
else:
# GH14962
expected = Series([], dtype=np.int64)
expected.index = _asfreq_compat(df.index, freq)
tm.assert_index_equal(result.index, expected.index)
assert result.index.freq == expected.index.freq
tm.assert_almost_equal(result, expected)
# test size for GH13212 (currently stays as df)
@pytest.mark.parametrize(
"index", [DatetimeIndex([]), TimedeltaIndex([]), PeriodIndex([], freq="D")]
)
@pytest.mark.parametrize("freq", ["ME", "D", "h"])
def test_resample_count_empty_dataframe(freq, index):
# GH28427
empty_frame_dti = DataFrame(index=index, columns=Index(["a"], dtype=object))
if freq == "ME" and isinstance(empty_frame_dti.index, TimedeltaIndex):
msg = (
"Resampling on a TimedeltaIndex requires fixed-duration `freq`, "
"e.g. '24h' or '3D', not <MonthEnd>"
)
with pytest.raises(ValueError, match=msg):
empty_frame_dti.resample(freq)
return
elif freq == "ME" and isinstance(empty_frame_dti.index, PeriodIndex):
# index is PeriodIndex, so convert to corresponding Period freq
freq = "M"
warn = None
if isinstance(empty_frame_dti.index, PeriodIndex):
warn = FutureWarning
msg = "Resampling with a PeriodIndex is deprecated"
with tm.assert_produces_warning(warn, match=msg):
rs = empty_frame_dti.resample(freq)
result = rs.count()
index = _asfreq_compat(empty_frame_dti.index, freq)
expected = DataFrame(dtype="int64", index=index, columns=Index(["a"], dtype=object))
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"index", [DatetimeIndex([]), TimedeltaIndex([]), PeriodIndex([], freq="D")]
)
@pytest.mark.parametrize("freq", ["ME", "D", "h"])
def test_resample_size_empty_dataframe(freq, index):
# GH28427
empty_frame_dti = DataFrame(index=index, columns=Index(["a"], dtype=object))
if freq == "ME" and isinstance(empty_frame_dti.index, TimedeltaIndex):
msg = (
"Resampling on a TimedeltaIndex requires fixed-duration `freq`, "
"e.g. '24h' or '3D', not <MonthEnd>"
)
with pytest.raises(ValueError, match=msg):
empty_frame_dti.resample(freq)
return
elif freq == "ME" and isinstance(empty_frame_dti.index, PeriodIndex):
# index is PeriodIndex, so convert to corresponding Period freq
freq = "M"
msg = "Resampling with a PeriodIndex"
warn = None
if isinstance(empty_frame_dti.index, PeriodIndex):
warn = FutureWarning
with tm.assert_produces_warning(warn, match=msg):
rs = empty_frame_dti.resample(freq)
result = rs.size()
index = _asfreq_compat(empty_frame_dti.index, freq)
expected = Series([], dtype="int64", index=index)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"index",
[
PeriodIndex([], freq="M", name="a"),
DatetimeIndex([], name="a"),
TimedeltaIndex([], name="a"),
],
)
@pytest.mark.parametrize("dtype", [float, int, object, "datetime64[ns]"])
@pytest.mark.filterwarnings(r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning")
def test_resample_empty_dtypes(index, dtype, resample_method):
# Empty series were sometimes causing a segfault (for the functions
# with Cython bounds-checking disabled) or an IndexError. We just run
# them to ensure they no longer do. (GH #10228)
warn = None
if isinstance(index, PeriodIndex):
# GH#53511
index = PeriodIndex([], freq="B", name=index.name)
warn = FutureWarning
msg = "Resampling with a PeriodIndex is deprecated"
empty_series_dti = Series([], index, dtype)
with tm.assert_produces_warning(warn, match=msg):
rs = empty_series_dti.resample("d", group_keys=False)
try:
getattr(rs, resample_method)()
except DataError:
# Ignore these since some combinations are invalid
# (ex: doing mean with dtype of np.object_)
pass
@pytest.mark.parametrize(
"index",
[
PeriodIndex([], freq="D", name="a"),
DatetimeIndex([], name="a"),
TimedeltaIndex([], name="a"),
],
)
@pytest.mark.parametrize("freq", ["ME", "D", "h"])
def test_apply_to_empty_series(index, freq):
# GH 14313
ser = Series(index=index)
if freq == "ME" and isinstance(ser.index, TimedeltaIndex):
msg = (
"Resampling on a TimedeltaIndex requires fixed-duration `freq`, "
"e.g. '24h' or '3D', not <MonthEnd>"
)
with pytest.raises(ValueError, match=msg):
ser.resample(freq)
return
elif freq == "ME" and isinstance(ser.index, PeriodIndex):
# index is PeriodIndex, so convert to corresponding Period freq
freq = "M"
msg = "Resampling with a PeriodIndex"
warn = None
if isinstance(ser.index, PeriodIndex):
warn = FutureWarning
with tm.assert_produces_warning(warn, match=msg):
rs = ser.resample(freq, group_keys=False)
result = rs.apply(lambda x: 1)
with tm.assert_produces_warning(warn, match=msg):
expected = ser.resample(freq).apply("sum")
tm.assert_series_equal(result, expected, check_dtype=False)
@pytest.mark.parametrize(
"index",
[
timedelta_range("1 day", "10 day", freq="D"),
date_range(datetime(2005, 1, 1), datetime(2005, 1, 10), freq="D"),
period_range(datetime(2005, 1, 1), datetime(2005, 1, 10), freq="D"),
],
)
def test_resampler_is_iterable(index):
# GH 15314
series = Series(range(len(index)), index=index)
freq = "h"
tg = Grouper(freq=freq, convention="start")
msg = "Resampling with a PeriodIndex"
warn = None
if isinstance(series.index, PeriodIndex):
warn = FutureWarning
with tm.assert_produces_warning(warn, match=msg):
grouped = series.groupby(tg)
with tm.assert_produces_warning(warn, match=msg):
resampled = series.resample(freq)
for (rk, rv), (gk, gv) in zip(resampled, grouped):
assert rk == gk
tm.assert_series_equal(rv, gv)
@pytest.mark.parametrize(
"index",
[
timedelta_range("1 day", "10 day", freq="D"),
date_range(datetime(2005, 1, 1), datetime(2005, 1, 10), freq="D"),
period_range(datetime(2005, 1, 1), datetime(2005, 1, 10), freq="D"),
],
)
def test_resample_quantile(index):
# GH 15023
ser = Series(range(len(index)), index=index)
q = 0.75
freq = "h"
msg = "Resampling with a PeriodIndex"
warn = None
if isinstance(ser.index, PeriodIndex):
warn = FutureWarning
with tm.assert_produces_warning(warn, match=msg):
result = ser.resample(freq).quantile(q)
expected = ser.resample(freq).agg(lambda x: x.quantile(q)).rename(ser.name)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("how", ["first", "last"])
def test_first_last_skipna(any_real_nullable_dtype, skipna, how):
# GH#57019
if is_extension_array_dtype(any_real_nullable_dtype):
na_value = Series(dtype=any_real_nullable_dtype).dtype.na_value
else:
na_value = np.nan
df = DataFrame(
{
"a": [2, 1, 1, 2],
"b": [na_value, 3.0, na_value, 4.0],
"c": [na_value, 3.0, na_value, 4.0],
},
index=date_range("2020-01-01", periods=4, freq="D"),
dtype=any_real_nullable_dtype,
)
rs = df.resample("ME")
method = getattr(rs, how)
result = method(skipna=skipna)
gb = df.groupby(df.shape[0] * [pd.to_datetime("2020-01-31")])
expected = getattr(gb, how)(skipna=skipna)
expected.index.freq = "ME"
tm.assert_frame_equal(result, expected)