Binary Builders Audit Report

Date of Engagement: July 17th, 2023 - Oct 17th, 2023

Document reViSion RISTOIY..........ccoiiiiiiuiiiiiiiiiiecceeereeeeeeeeeeeeeeeeneeeeeeeeeeennsssssesessnnssssssssseennns 4

070741 T =P ON 4
EXECULIVE OVEIVIEW.....ccciiiiiiiiiiiiiiiiieiieeneieeeeereeeseeseesesssssssssssssssssssssssssssssssesssessssssssssnnsnnns 5
INEFOAUCTION. ...ttt ettt e et e e st e sbe et e esbesseesseessessaenseensessaeseensens 5
AUAIT SUMIMIAIY ..ottt e ete e et eeab e e te e e tbeeeteeeaseesaseesseessseeseesaseesseeenseas 5
Test Approach & Methodology........ccueeiiiiiiieeccee e 6
RISK MEENOAOIOQYottt ettt et et e e e e saeeeaeeenseenneas 7
S Telo] o 1= TSROSO T U PRSP PP PP UURUURUUPPURRIOt 8
FUTUIE AUGITS. ...ttt ettt et a et e et e st e e b e enseeaeeseenseeneenaeenees 9
Assessment Summary & FINdiNGS OVEIVIEW.........ccccuuuuerreeeeememummmnenenrrrieriesieeeesesesassannassssasaeaaes 9
Findings & Tech Details........cccoiveuuueiiiiiiiiiccceeeeteeteeceeecereeneeeee e e e eeennneeeeeeeeeennnsssssessesnnnnnnns 10
VN, ettt ettt et e e tt e te e b e eabeeae et e eabeesaeehe e b e enbeete e teenbeease st ebeenbensaeteenbaeneas 10
Finding 0071 - Shortening of KEYMINTEN.........cc.oooiiiiiiiieeeceee e 10
Finding 002 - Shortening of KeyGeneSiSTIME........ccvcuieieiieiieieeeecteee et 11
Finding 003 - Streamlined Encoding of GenesiSTIiMe.........c.cccoveeviiiiiieciiicieee e, 12
Finding 004 - Renaming of target inflation rate............ccccoeviieieiieciiceee e 13
Finding 005 - Initialization of Inflation Constants............ccccccoeeiiiiiiicicce e 14
Finding 006 - AppModule Updates...........c.oooiieiiieieeiieieeeeee et 15
Finding 007 - Implement gRPC Query Handlers............c.ooouieiiieiiicieeeeeeeeeee e 15
Finding 008 - Minter Evaluation.............coovioiiiiieeeeee e e 16
Finding 009 - Reliance on Previous BIOCK TiMe..........cccoooiiiiiiiciiiceeee e 17
ParAMFIIEN.......eoieeeeeeeeee ettt ettt et ettt et e e ae b e b e re e teebeesaeeaeenaas 17
Finding 010 - Use Struct as Map Key for Blocked Params.............ccccoeevvievieciiecieciecn, 17
Finding 011 - Check for Duplicate Blocked Params..............ccccoieiiieiineniieeeceeeeee 18
Finding 012 - Verify Subspace EXISTENCE...........ccooooviiiiiiiicieececeeee e 19
Finding 013 - Middleware Approach for Param Change Proposal............cccccoeevievenieennenne. 19
Finding 014 - Gov Handler IMprovements............cccooouiiiuiieiiccieeceeeeeeeee e 20
6] 0 o] = Lo [T OO RUUOPSRUPRRUPROR 20
L0111 =] PRSP 21
Finding 015 - Unclear Wrapping Of ICS4..........ooiiiiiieee e 21
Finding 016 - TokenFilterMiddleware Documentation...............ccccccveeiieiiiecicciecee e 21
QGB.... ettt et b e ateete et e et e te e be et e etseete e b e eteeeteeteenaeeaeenteenns 22
RS To] o {1 42O O R RPRRSPPI 22
Finding 017 - An Erroneous _newValidatorSetHash Renders the Bridge Unusabile....... 22
Finding 018 - No Restrictions on state_powerThreshold............................l 23
Finding 019 - Unchecked Arithmetic Can Save Gas........ccccccvvvviiiiiiiiiiiii 23
Finding 020 - Differing Style in Use of state_eventNonce and
state_lastValidatorSetCheckpoint..............oooooiiiiiiiiiiii s 24

(€10 X 0100 o [U] L= THN TR 24

Finding 021 - Key Prefix TYPe ISSUE...... ... sveeseeeseeeees 25

Finding 022 - Slow ISEVMAddress FUNCLON.............ooiiiiiiiiiiiiiiiieeeeeeeeeee 25
Finding 023 - Non-Idiomatic Code in genesSiS.go0........cuuuiieiiiiiiiiiiiie e 26
Finding 024 - Unused Variables in abi_consts.go.............eoiviiiiiiiiiiiieeeeeeee 26
Finding 025 - Unused Variables in €rrors.go........c..uueeiiiie i 27
Finding 026 - Unused ConvertByte ArrToString in KEYS.gO.......covvvvviviiiiiiiiiiieiieeiieeeeeeee 27
Finding 027 - Non-Idiomatic Bytes-to-String Conversion.............ccccccoveiiiivvneninnnnnnninnns 28
Finding 028 - Sorting Inefficiency in validator.go............ccceeviiiiiiii e 28
Finding 029 - Inefficient Duplicate Handling............coooiimiiiiiiie e 29
Finding 030 - Test Method in Production Code.............ccuuiiiiiiiiiiiiiiiiee e 29
Finding 031 - Improper Use of Floats in PowerDiff..................ooo oo, 30
Finding 032 - Use of Floats in SignificantPowerDiff..............cccocvveiiiiiiiiiiiiiiieeieeeeeeeeeeee, 30
Finding 033 - Silent Overflow in POWErDIff...........oooiiiiiiii e 31
Finding 034 - Excessive Computation in PowerDiff..............ccccoiiiiieen 31
Finding 035 - TwoThirdThreshold Precision.............ccoiiiiiiiieeeee e 32
Finding 036 - Redundant Calculations in handleValSetRequest...............cccooeiiiiiinnnn, 32
Finding 037 - Unoptimized Data Retrieval............coouviiiiiiiii e 33
Finding 038 - Incomplete Genesis EXport/Import............coooviiiiiii 33

Finding 039 - Unexplained Module Consensus Version............cccccuveeiiiiieeeiiieeee s 34

Document revision history

Version Modification Date Author
0.1 Initial creation 2023-07-27 Onur Akpolat
0.2 Add Mint and 2023-08-09 Frojdi Dymylja
ParamFilter audit
0.3 Add Tokenfilter audit | 2023-08-14 Aleksandr Bezobchuk
0.4 Add Upgrade audit 2023-08-17 Aleksandr Bezobchuk
0.5 Update document 2023-08-17 Onur Akpolat
structure add
disclaimer
0.6 Add QGB Solidity 2023-09-19 Onur Akpolat
audit
1.0 Add QGB Go audit 2023-10-17 Onur Akpolat
Contacts
Contact Company Email
Marko Baricevic Binary Builders marko@binary.builders
Aleksandr Bezobchuk Binary Builders bez@binary.builders
Frojdi Dymylja Binary Builders frojdi@binary.builders
Onur Akpolat Binary Builders onur@binary.builders

Executive Overview

Introduction

Celestia engaged our team of blockchain auditors to conduct a security audit on their smart
contracts and modules beginning on July 15th, 2023 and ending on August 15th, 2023. The
security assessment was scoped to the smart contracts and modules provided in the following
Celestia GitHub repositories:

https://github.com/celestiaorg/celestia-app/tree/main/x/min

https://github.com/celestiaorg/celestia-app/tree/main/x/paramfilter

https://github.com/celestiaorg/celestia-app/tree/main/x/agb

https://qithub.com/celestiaorg/quantum-gravity-bridge/tree/master/src

https://github.com/celestiaorg/celestia-app/tree/main/x/tokenfilter

https://qithub.com/celestiaorg/celestia-app/tree/main/x/upgrade

Audit Summary

The team was provided one month for the engagement and assigned two security engineers,
Frojdi Dymylja and Aleksandr Bezobchuk, to audit the security of the smart contracts and
modules. Both security engineers are blockchain and smart-contract security experts with
advanced penetration testing, smart-contract hacking, and deep knowledge of multiple
blockchain protocols.

The purpose of this audit is to:

e Ensure that smart contract and module functions operate as intended
e Identify potential security issues with the smart contracts and modules

In summary, our team did not detect any critical security vulnerabilities but did identify several
informational issues that can be addressed by the Celestia team.

https://github.com/celestiaorg/celestia-app/tree/main/x/mint
https://github.com/celestiaorg/celestia-app/tree/main/x/paramfilter
https://github.com/celestiaorg/celestia-app/tree/main/x/qgb
https://github.com/celestiaorg/quantum-gravity-bridge/tree/master/src
https://github.com/celestiaorg/celestia-app/tree/main/x/tokenfilter
https://github.com/celestiaorg/celestia-app/tree/main/x/upgrade

Test Approach & Methodology

Our team performed a combination of manual and automated security testing to balance
efficiency, timeliness, practicality, and accuracy in regard to the scope of this audit. While
manual testing is recommended to uncover flaws in logic, process, and implementation;
automated testing techniques help enhance coverage of the code and can quickly identify items
that do not follow security best practices. The following phases and associated tools were used
throughout the term of the audit:

Research into architecture and purpose

Smart contract and module manual code review and walkthrough

Graphing out functionality and contract logic/connectivity/functions

Manual testing & assessment of use and safety for the critical variables and functions in
scope to identify any vulnerability classes

e Scanning of contract files for vulnerabilities, security hotspots, or bugs.

Risk Methodology

Vulnerabilities or issues observed by our team are ranked based on the risk assessment
methodology by measuring the LIKELIHOOD of a security incident and the IMPACT should an
incident occur. This framework works for communicating the characteristics and impacts of
technology vulnerabilities. The quantitative model ensures repeatable and accurate
measurement while enabling users to see the underlying vulnerability characteristics that were
used to generate the Risk scores. For every vulnerability, a risk level will be calculated on a scale
of 5to 1 with 5 being the highest likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.
2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.
4 - May cause a significant level of impact or loss.

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating a value of 10 to 1 with
10 being the highest level of security risk.

10 - CRITICAL
9-8-HIGH
7-6-MEDIUM
5-4-LOW
3-1-INFORMATIONAL

Scope

The security assessment was scoped to the following modules:

Module Repository

Mint https://github.com/celestiaorg/celestia-app/tree/main/x/min

Paramfilter https://github.com/celestiaorg/celestia-app/tree/main/x/paramfil
ter

QGB https://qgithub.com/celestiaorg/celestia-app/tree/main/x/qgb
https://github.com/celestiaorg/quantum-gravity-bridge/tree/mast
er/src

Tokenfilter https://github.com/celestiaorg/celestia-app/tree/main/x/tokenfilt
er

Upgrade https://qithub.com/celestiaorg/celestia-app/tree/main/x/upgrade

Audit Branch/Tag: v1.0.0-rc10

SDK Version: v0.46.13
IBC Version: v6.2.0

CometBFT (Tendermint) Version: v0.34.28

https://github.com/celestiaorg/celestia-app/tree/main/x/mint
https://github.com/celestiaorg/celestia-app/tree/main/x/paramfilter
https://github.com/celestiaorg/celestia-app/tree/main/x/paramfilter
https://github.com/celestiaorg/celestia-app/tree/main/x/qgb
https://github.com/celestiaorg/quantum-gravity-bridge/tree/master/src
https://github.com/celestiaorg/quantum-gravity-bridge/tree/master/src
https://github.com/celestiaorg/celestia-app/tree/main/x/tokenfilter
https://github.com/celestiaorg/celestia-app/tree/main/x/tokenfilter
https://github.com/celestiaorg/celestia-app/tree/main/x/upgrade

Future Audits

Our team suggests the need for a new security audit whenever important new functionality is
developed in the core of the protocol. Focusing on the base contract, as well as on the main
modules (staking, vesting, and governance) would be critical.

Moreover, it is essential to audit the security of new upcoming projects that use the Celestia
protocol, as the way they interface with the core protocol can create security vulnerabilities in
third-party apps.

In summary, it would be very beneficial for the project to perform a security audit in the following
scenarios:

Changes have been made to the base contract
Changes have been made to the staking module
Changes have been made to the vesting module
New modules have been developed

New projects aiming to use the Celestia protocol

Assessment Summary & Findings Overview

e Several modules use deprecated methods and could benefit from adopting more recent
approaches.

e The code could benefit from improved legibility through clearer variable naming and
documentation.

e One issue identified involves reliance on the previous block's time in the token minting
process, which may be a concern in future CometBFT developments.

These issues are mostly informational and have low risk. Recommendations have been
provided for each finding.

Findings & Tech Details

Mint

This audit of the "x/mint” module in the "celestia-app™ highlights several areas for improvement,
especially concerning data storage strategies and naming conventions. Implementing the
provided suggestions can improve the clarity, efficiency, and maintainability of the module.

Finding 001 - Shortening of KeyMinter

ID 001
Finding Shortening of KeyMinter
Severity 0 - Informational

The bytes key "KeyMinter' is longer than necessary. Shortening it
to something like “[]byte{0x0", will save minimal storage space

Description and align better with standard module storage practices.
Additionally, it paves the way for smoother transitions to
collections.

Recommendation Trim the length of KeyMinter.

[keys.go#L4](https://qgithub.com/celestiaorg/celestia-app/blob/
Code References main/x/mint/types/keys.go#L4)

https://github.com/celestiaorg/celestia-app/blob/main/x/mint/types/keys.go#L4
https://github.com/celestiaorg/celestia-app/blob/main/x/mint/types/keys.go#L4

Finding 002 - Shortening of KeyGenesisTime

ID 002
Finding Shortening of KeyGenesisTime
Severity 0 - Informational

Similar to "KeyMinter’, the 'KeyGenesisTime' can also benefit from

Description a reduction in length.

Recommendation Reduce the length of KeyGenesisTime.

[keys.go#L7](https://github.com/celestiaorg/celestia-app/blob/ma
Code References in/x/mint/types/keys.qo#L7)

https://github.com/celestiaorg/celestia-app/blob/main/x/mint/types/keys.go#L7
https://github.com/celestiaorg/celestia-app/blob/main/x/mint/types/keys.go#L7

Finding 003 - Streamlined Encoding of GenesisTime

ID
Finding

Severity

Description

Recommendation

Code References

003

Streamlined Encoding of GenesisTime

0 - Informational

The "GenesisTime’ value is currently stored in state via an
intermediary protobuf representation. This intermediate step is
not essential as there are simpler methods to encode time to
bytes, such as “sdk.FormatTimeBytes'.

Transition to using direct encoding methods like
“sdk.FormatTimeBytes" for a more straightforward and efficient
encoding process.

[mint.proto#L37](https://github.com/celestiaorg/celestia-app/bl
ob/main/proto/celestia/mint/v1/mint.proto#L37)

[keeper.go#L63](https://qgithub.com/celestiaorg/celestia-app/blo
b/main/x/mint/keeper/keeper.go#L63)

[keeper.go#L70](https://github.com/celestiaorg/celestia-app/blo
b/main/x/mint/keeper/keeper.go#L70)

https://github.com/celestiaorg/celestia-app/blob/main/proto/celestia/mint/v1/mint.proto#L37
https://github.com/celestiaorg/celestia-app/blob/main/proto/celestia/mint/v1/mint.proto#L37
https://github.com/celestiaorg/celestia-app/blob/main/x/mint/keeper/keeper.go#L63
https://github.com/celestiaorg/celestia-app/blob/main/x/mint/keeper/keeper.go#L63
https://github.com/celestiaorg/celestia-app/blob/main/x/mint/keeper/keeper.go#L70
https://github.com/celestiaorg/celestia-app/blob/main/x/mint/keeper/keeper.go#L70

Finding 004 - Renaming of target inflation rate

ID
Finding

Severity

Description

Recommendation

Code References

004

Renaming of target inflation rate

0 - Informational

The term "target inflation rate" can be misleading. A more apt
name would clearly indicate that this rate is the minimum
inflation rate expected.

Consider renaming to a more descriptive term, such as
‘minimum_target_inflation_rate’ or another name that better
communicates its function.

[constants.go#L30](https://qgithub.com/celestiaorg/celestia-app/
blob/main/x/mint/types/constants.qo#L30)

https://github.com/celestiaorg/celestia-app/blob/main/x/mint/types/constants.go#L30
https://github.com/celestiaorg/celestia-app/blob/main/x/mint/types/constants.go#L30

Finding 005 - Initialization of Inflation Constants

ID
Finding

Severity

Description

Recommendation

Code References

005

Initialization of Inflation Constants

0 - Informational

Inflation constants are currently reallocated every time they are
accessed. This frequent reallocation is not necessary and may result in
minor performance overheads.

Initialize inflation constants as variables once, and reuse them when
needed, promoting efficiency and consistency.

[constants.go#L.22](https://github.com/celestiaorg/celestia-app/blob/
main/x/mint/types/constants.qgo#L22)

[constants.go#L26](https://github.com/celestiaorg/celestia-app/blob/
main/x/mint/types/constants.go#L26)

[constants.go#L.30](https://github.com/celestiaorg/celestia-app/blob/
main/x/mint/types/constants.go#L30)

https://github.com/celestiaorg/celestia-app/blob/main/x/mint/types/constants.go#L22
https://github.com/celestiaorg/celestia-app/blob/main/x/mint/types/constants.go#L22
https://github.com/celestiaorg/celestia-app/blob/main/x/mint/types/constants.go#L26
https://github.com/celestiaorg/celestia-app/blob/main/x/mint/types/constants.go#L26
https://github.com/celestiaorg/celestia-app/blob/main/x/mint/types/constants.go#L30
https://github.com/celestiaorg/celestia-app/blob/main/x/mint/types/constants.go#L30

Finding 006 - AppModule Updates

ID
Finding

Severity

Description

Recommendation

Code References

006

AppModule Updates

0 - Informational

There are a few interface method implementations that could use
re-evaluation. Specifically:

e The legacy querier is deprecated and newer chains should
avoid implementing functionality that is now deprecated (see:
LegacyQuerierHandler).

e Double check that all types and interfaces are registered in
Registerinterfaces.

See description.

x/mint/module.go

Finding 007 - Implement gRPC Query Handlers

ID
Finding

Severity

Description

Recommendation

Code References

007

Implement gRPC Query Handlers

0 - Informational
Currently, queries are handled via legacy querier methods via a
sdk.Querier. Instead, consider implementing a gRPC wrapper

around a Keeper which implements the gRPC service and register
this in module.go. This also avoids needless JSON marshalling.

See description.

x/mint/keeper/querier.go

Finding 008 - Minter Evaluation

ID
Finding

Severity

Description

Recommendation

Code References

008

Minter Evaluation

0 - Informational

There are a few minor bits in the minter that could minor linting
and evaluation. Specifically,

e Thereis a needless cast to int64 in yearsSinceGenesis.

e CalculateBlockProvision should consider ensuring
previous is indeed less than current time and perhaps error
when that is not the case.

e Avoid needless int64 casting in CalculateBlockProvision
and CalculatelnflationRate.

See description.

x/mint/types/minter.go

Finding 009 - Reliance on Previous Block Time

ID
Finding

Severity

Description

Recommendation

Code References

Paramfilter

009

Reliance on Previous Block Time

3 - Very low

CalculateBlockProvision uses the previous block’s time in order to
calculate the number of tokens to mint each block. Since in
CometBFT, the proposer, or a cabal of validators with sufficient
power, of a block could manipulate the block time in order to skew
or impact the result of CalculateBlockProvision. In practice, there
has been zero evidence of this happening. However, as a defensive
measure, until CometBFT implements some notion of PBTS
(proposer-based timestamps), ABCl++ should be explored to
evaluate timestamps and ensure their integrity.

Explore ABCI++ to evaluate timestamps.

x/mint/abci.go

The audit of the "ParamFilter’ module in the “celestia-app” revealed several areas of potential
improvement, primarily focused on ensuring configuration accuracy, reducing code redundancy,
and refining the data structures. Implementing the recommended changes would further
enhance the quality, clarity, and maintainability of the module.

Finding 010 - Use Struct as Map Key for Blocked Params

ID
Finding

Severity

Use Struct as Map Key for Blocked Params

0 - Informational

The current implementation uses [2]string for blocked params. It would
Description be more idiomatic and type-safe to use a defined struct like
struct{Module string, Key string}.

Recommendation Implement the use of the recommended struct format.

[gov_handler.go#L22](https://github.com/celestiaorg/celestia-app/blob
/main/x/paramfilter/gov_handler.go#L 22)

[gov_handler.go#L25](https://github.com/celestiaorg/celestia-app/blob
/main/x/paramfilter/gov_handler.go#L25)

Code References [gov_handler.go#L32](https://github.com/celestiaorg/celestia-app/blob

/main/x/paramfilter/gov_handler.go#L32)

[gov_handler.go#L17](https://github.com/celestiaorg/celestia-app/blob
/main/x/paramfilter/gov_handler.go#L17)

Finding 011 - Check for Duplicate Blocked Params

ID 011
Finding Check for Duplicate Blocked Params
Severity 0 - Informational

The current code does not validate or check for parameters that are
Description blocked multiple times. Although overwriting occurs and this doesn't
lead to functional issues, it might be indicative of misconfiguration.

Implement a check for duplicate blocked parameters to prevent

Recommendation . . .
potential misconfigurations

Code References gov_handler.go#L38

https://github.com/celestiaorg/celestia-app/blob/main/x/paramfilter/gov_handler.go#L22
https://github.com/celestiaorg/celestia-app/blob/main/x/paramfilter/gov_handler.go#L22
https://github.com/celestiaorg/celestia-app/blob/main/x/paramfilter/gov_handler.go#L25
https://github.com/celestiaorg/celestia-app/blob/main/x/paramfilter/gov_handler.go#L25
https://github.com/celestiaorg/celestia-app/blob/main/x/paramfilter/gov_handler.go#L32
https://github.com/celestiaorg/celestia-app/blob/main/x/paramfilter/gov_handler.go#L32
https://github.com/celestiaorg/celestia-app/blob/main/x/paramfilter/gov_handler.go#L17
https://github.com/celestiaorg/celestia-app/blob/main/x/paramfilter/gov_handler.go#L17

Finding 012 - Verify Subspace Existence

ID
Finding

Severity

Description

Recommendation

Code References

012

Verify Subspace Existence

0 - Informational

The code lacks a check for the existence of the subspace when
creating the governance handler.

Introduce a validation step that ensures blocked params are part of the
subspace.

[gov_handler.go#L38](https://github.com/celestiaorg/celestia-app/blob
/main/x/paramfilter/gov_handler.go#L 38)

Finding 013 - Middleware Approach for Param Change Proposal

ID
Finding

Severity

Description

Recommendation

Code References

013

Middleware Approach for Param Change Proposal

0 - Informational

The code for the param change proposal duplicates logic from the
params module. This redundancy could lead to maintenance issues if
the original params module is modified.

Adopt a middleware approach, letting the "ParamFilter’ module rely on
the param handler provided by the params module. This ensures
continuity and minimizes the scope of "ParamFilter’ to its intended
functionality.

[gov_handler.go#L62:L74](https://github.com/celestiaorg/celestia-app/
blob/main/x/paramfilter/gov_handler.go#L62:L74)

https://github.com/celestiaorg/celestia-app/blob/main/x/paramfilter/gov_handler.go#L38
https://github.com/celestiaorg/celestia-app/blob/main/x/paramfilter/gov_handler.go#L38
https://github.com/celestiaorg/celestia-app/blob/main/x/paramfilter/gov_handler.go#L62:L74
https://github.com/celestiaorg/celestia-app/blob/main/x/paramfilter/gov_handler.go#L62:L74

Finding 014 - Gov Handler Improvements

ID
Finding

Severity

Description

Recommendation

Code References

Upgrade

014

Gov Handler Improvements

0 - Informational

There are two minor programmatic improvements that could be made
to the ParamBlockList type and implementation that would improve
legibility.

e The argument ‘blockedParams ...[2]string)’ provided to
NewParamBlockList could instead be a concept type
encapsulating the subspace and key as fields. This would make
it more clear what the arguments are meant for. In addition, a
String method could be defined on this type to avoid multiple
error-prone calls to fmt.Sprintf.

e The message logged in handleParameterChangeProposal
should avoid fmt.Sprintf call and instead use the expected API
of passing key/value pairs.

Implement recommended changes in the code, as detailed in the audit.

x/paramfilter/gov_handler.go

No Findings. Apart from tests and codec registration, there was no real code to audit in the

x/upgrade module..

Tokenfilter

Finding 015 - Unclear Wrapping of ICS4

ID
Finding

Severity

Description

Recommendation

Code References

015

Unclear Wrapping of ICS4

0 - Informational

It's unclear why there needs to be a wrapping of the
porttypes.ICS4Wrapper via a Keeper type? Consider adding additional
documentation on why the type needs to be wrapped by a proprietary
Keeper or consider removing it altogether.

See description.

Finding 016 - TokenFilterMiddleware Documentation

ID
Finding

Severity

Description

Recommendation

Code References

016

TokenFilterMiddleware Documentation

0 - Informational
The tokenFilterMiddleware type declares it inherits the ICS4Wrapper

type, but it does not seem that is the case. Consider updating the
documentation.

Update the documentation.

QGB

Solidity

Finding 017 - An Erroneous _newValidatorSetHash Renders the Bridge

Unusable

ID
Finding

Severity

Description

Recommendation

Code References

017

An Erroneous newValidatorSetHash Renders the Bridge Unusable

4-LOW

Validator set updates are made by calling
QuantumGravityBridge.updateValidatorSet and passing in the
_newValidatorSetHash.

Validation of this hash occurs outside of the QuantumGravityBridge
contract. In the event an erroneous hash is published, e.g. one missing
address or an unsorted address array provided, future calls to both
updateValidatorSet and submitDataRootTupleRoot will fail.

Compute the newValidatorSetHash using
computeValidatorSetHash as aprecaution and include zero
address checks when updating the validator set.

QuantumGravityBridge.sol#L247

https://github.com/celestiaorg/quantum-gravity-bridge/blob/eb7a4e74718b80277ad9dde116ead67383f5fe15/src/QuantumGravityBridge.sol#L247

Finding 018 - No Restrictions on state powerThreshold

ID 018
Finding No Restrictions on state powerThreshold
Severity 4-1LOW

state powerThreshold may be setto any uint256 value. If set too
high, it becomes impossible for signature checks with

Description . .
P checkvalidatorSignatures to succeed.

When setting state_powerThreshold, validate it is being set within an

Recommendation
acceptable range.

Code References QuantumGravityBridge.sol#L52

Finding 019 - Unchecked Arithmetic Can Save Gas

ID 019
Finding Unchecked Arithmetic Can Save Gas
Severity 0 - Informational
_— Incrementing of i is certain to not overflow (block gas limit would be
Description

reached before an overflow is possible.

Make use of unchecked {} where operations are certain to not

Recommendation
overflow.

Code References QuantumGravityBridge.sol#L193-L226

https://github.com/celestiaorg/quantum-gravity-bridge/blob/eb7a4e74718b80277ad9dde116ead67383f5fe15/src/QuantumGravityBridge.sol#L52
https://github.com/celestiaorg/quantum-gravity-bridge/blob/eb7a4e74718b80277ad9dde116ead67383f5fe15/src/QuantumGravityBridge.sol#L193-L226

Finding 020 - Differing Style in Use of state_eventNonce and
state_lastValidatorSetCheckpoint

ID 020
Finding Unchecked Arithmetic Can Save Gas
Severity 0 - Informational

Both of state eventNonce and

state lastValidatorSetCheckpoint are used one time, however,
state eventNonceis sload’ed priorto use whereas

state lastValidatorSetCheckpoint is sload’ed when needed.

Description

Consider a consistent variable caching style performing both s1oads

Recommendation at the beginning of the function.

Code References QuantumGravityBridge.sol#L317

Go module

The Quantum Gravity Bridge module within the Celestia chain serves the purpose of
providing attestations. These attestations can either signal Validator Set Changes or
represent Data Commitments. The overall security is premised on the majority honesty
of the Celestia validator power.

State Management vs. Validation

Context: Clarity and separation of concerns.

Issue: The module appears to mix state management functions with validation, blurring their
distinct roles. Such a mix can lead to confusion and potential errors.

Example: The GetLatestAttestationNonce method panics instead of returning a boolean
for nonce existence. This conflation means another function,
CheckLatestAttestationNonce, is needed, complicating the logic.

Redundant Function Calls
Context: Inefficient usage of resources.

Issue: Some execution paths in the codebase call the same function multiple times, despite the
output being already available.

https://github.com/celestiaorg/quantum-gravity-bridge/blob/eb7a4e74718b80277ad9dde116ead67383f5fe15/src/QuantumGravityBridge.sol#L317

Example: The method at abci.go gets the data commitment window, but then subsequently calls
NextDataCommitment which fetches the data commitment window again.

Finding 021 - Key Prefix Type Issue

ID 021

Finding Conformance with cosmos-sdk standards.

Severity 0 - Informational

Description Key prefixes should utilize bytes instead of string

Recommendation Convert key prefixes to bytes type.

Code References keys.go

Finding 022 - Slow IsEVMAddress Function

ID 022
Finding Over time, with a bloating state, the function’s performance degrades.
Severity 5 - Medium

The function’s iteration over EVMAddresses in the QGB evm addr to val

Description addr prefix results in reduced performance.

Integrate a KeySet (refer to cosmossdk.io/collections.KeySet) for faster
existence verification.

Recommendation

Code References keeper_valset.go

https://github.com/celestiaorg/celestia-app/blob/main/x/qgb/abci.go#L48
https://github.com/celestiaorg/celestia-app/blob/main/x/qgb/types/keys.go#L27:L42
http://cosmossdk.io/collections.KeySet
https://github.com/celestiaorg/celestia-app/blob/main/x/qgb/keeper/keeper_valset.go#L225

Finding 023 - Non-ldiomatic Code in genesis.go

ID 023

Finding Improved code readability.

Severity 0 - Informational

Description The else if structure affects code readability.

Recommendation Replace else if with separate if conditions.

Code References genesis.go

Finding 024 - Unused Variables in abi_consts.go

ID 024

Finding Unused variables.

Severity 0 - Informational

Description Variables present but not used.

Delete these variables or provide documentation explaining their
presence.

Recommendation

e FExternalQGBABI
Code References e BridgeValidatorABI
e DcDomainSeparator

https://github.com/celestiaorg/celestia-app/blob/main/x/qgb/types/genesis.go#L61
https://github.com/celestiaorg/celestia-app/blob/main/x/qgb/types/abi_consts.go#L119
https://github.com/celestiaorg/celestia-app/blob/main/x/qgb/types/abi_consts.go#L121
https://github.com/celestiaorg/celestia-app/blob/main/x/qgb/types/abi_consts.go#L124

Finding 025 - Unused Variables in errors.go

ID 025

Finding Unused variables.

Severity 0 - Informational

Description Presence of variables that aren't utilized.

Recommendation Remove these variables or provide a rationale for their existence.

Code References errors.go

Finding 026 - Unused ConvertByteArrToString in keys.go

ID 026

Finding Unused function.

Severity 0 - Informational

Description ConvertByteArrToString isn't used.

Recommendation Delete this function or clarify its purpose.

Code References keys.go

https://github.com/celestiaorg/celestia-app/blob/main/x/qgb/types/errors.go#L14
https://github.com/celestiaorg/celestia-app/blob/main/x/qgb/types/keys.go#L52

Finding 027 - Non-ldiomatic Bytes-to-String Conversion

ID 027
Finding Code inefficiencies related to unnecessary conversions.
Severity 0 - Informational

Non-idiomatic and inefficient string conversion. Resulting string data is

Description converted back to bytes, causing unneeded copying.

Recommendation Return bytes directly.

Code References keys.go

Finding 028 - Sorting Inefficiency in validator.go

ID 028

Finding Proper implementation of sorting for improved efficiency.
Severity 2 - Very Low

Description The sort.Interface is not optimally implemented.

Use the sort.Interface correctly or utilize the slices.Sort

Recommendation package (if permitted by the Go version).

Code References validator.go

https://github.com/celestiaorg/celestia-app/blob/main/x/qgb/types/keys.go#L48
https://github.com/celestiaorg/celestia-app/blob/main/x/qgb/types/validator.go#L83

Finding 029 - Inefficient Duplicate Handling

ID 029
Finding The complexity of HasDuplicates is suboptimal.
Severity 2 - Very Low

The function can be improved by using a map for existence checks,

Description making it more idiomatic and efficient.

Recommendation Refactor HasDuplicates to utilize a map for checking item existence.

Code References validator.go

Finding 030 - Test Method in Production Code

ID 030

Finding Proper separation of test and production code.

Severity 0 - Informational

Description GetPowers method is used only in tests but exists in production code.

Recommendation Move the method to test files.

Code References validator.go

https://github.com/celestiaorg/celestia-app/blob/main/x/qgb/types/validator.go#L161

Finding 031 - Improper Use of Floats in PowerDiff

ID 031

Finding Risks of non deterministic behaviour in float handling.
Severity 5 - Medium

Description The method uses floats.

Recommendation Switch to using sdk.Dec

Code References validator.go

Finding 032 - Use of Floats in SignificantPowerDiff

ID 032

Finding Risks of non deterministic behaviour in float handling.
Severity 5 - Medium

Description Floats are used for the SignificantPowerDiff constant.

Recommendation Transition to sdk.Dec.

Code References abci.go

https://github.com/celestiaorg/celestia-app/blob/main/x/qgb/types/validator.go#L115
https://github.com/celestiaorg/celestia-app/blob/main/x/qgb/abci.go#L18

Finding 033 - Silent Overflow in PowerDiff

ID
Finding

Severity

Description

Recommendation

Code References

033

Potential for incorrect results due to unnoticed overflows.

5 - Medium

The function allows silent overflow.

Trigger a panic for overflows or use a type that supports conversion to
int 64 without overflow.

validator.go

Finding 034 - Excessive Computation in PowerDiff

ID
Finding

Severity

Description

Recommendation

Code References

034

Optimizing performance by reducing unnecessary calculations.

2 -Very Low

The delta can be computed more efficiently during single validator
power changes.

Optimize delta calculations.

validator.go

https://github.com/celestiaorg/celestia-app/blob/main/x/qgb/types/validator.go#L119
https://github.com/celestiaorg/celestia-app/blob/main/x/qgb/types/validator.go#L124:L136

Finding 035 - TwoThirdThreshold Precision

ID 035

Finding Improving precision in ratio calculations.
Severity 0 - Informational

Description The returned ratio could be made more precise.

Enhance the precision of TwoThirdThreshold by applying a suitable

Recommendation o
multiplication factor.

Code References valset.go

Finding 036 - Redundant Calculations in handleValSetRequest

ID 036
Finding Optimizing computation by eliminating redundancy.
Severity 0 - Informational

The function checks three conditions before the
Description SetAttestationRequest branch, each with its computational
overhead.

Sequentially check each condition and execute the branch once a

Recommendation .
condition evaluates to true.

Code References abci.go

https://github.com/celestiaorg/celestia-app/blob/main/x/qgb/types/valset.go#L78
https://github.com/celestiaorg/celestia-app/blob/main/x/qgb/abci.go#L84

Finding 037 - Unoptimized Data Retrieval

ID 037
Finding Performance optimization for data fetches.
Severity 0 - Informational
- The GetDataCommitmentWindow method unnecessarily goes
Description

through the gRPC server.

Recommendation Use keeper.GetParams.

Code References keeper_data_commitment.go

Finding 038 - Incomplete Genesis Export/Import

ID 038

Finding Chain upgrades and state migrations.

Severity 0 - Informational

Description Only Parameters are exported, not attestations.

Enable attestation export or provide documentation justifying its

Recommendation .
omission.

Code References dgenesis.go

https://github.com/celestiaorg/celestia-app/blob/main/x/qgb/keeper/keeper_data_commitment.go#L44
https://github.com/celestiaorg/celestia-app/blob/main/x/qgb/genesis.go#L31

Finding 039 - Unexplained Module Consensus Version

ID 039
Finding Chain upgrades and state migrations.
Severity 0 - Informational

The consensus version of 2 is not documented, and no migration is

Description registered.

Recommendation Provide documentation or comments explaining this choice.

Code References module.go

https://github.com/celestiaorg/celestia-app/blob/main/x/qgb/module.go#L16

