@@ -153,7 +153,6 @@ extend_ahead <- function(epi_data, ahead) {
153
153
return (list (epi_data , effective_ahead ))
154
154
}
155
155
156
-
157
156
# ' get the Taylor expansion coefficients for a vector of values
158
157
# ' @param values the vector of values to interpolate
159
158
# ' @param degree the degree of the polynomial
@@ -233,7 +232,6 @@ calculate_whitening_params <- function(
233
232
return (learned_params )
234
233
}
235
234
236
-
237
235
# ' scale so that every data source has the same 95th quantile
238
236
data_whitening <- function (epi_data , colname , learned_params , nonlin_method = c(" quart_root" , " none" ), join_cols = NULL ) {
239
237
if (is.null(learned_params )) {
@@ -273,7 +271,6 @@ data_coloring <- function(epi_data, colname, learned_params, nonlin_method = c("
273
271
res %> % select(- ends_with(" _center" ), - ends_with(" _scale" ))
274
272
}
275
273
276
-
277
274
# ' the distance between two integers/dates, mod m e.g. mod_dist(1,9,10) = 2
278
275
mod_dist <- function (a , b , m ) {
279
276
pmin(as.integer(a - b ) %% m , as.integer(b - a ) %% m )
@@ -354,7 +351,6 @@ climate_median <- function(epi_data, target, ahead, window_size = 3, recent_wind
354
351
)
355
352
}
356
353
357
-
358
354
# ' add the first principal component for each season_week to epi_data, shifted
359
355
# ' by ahead
360
356
# ' @description
0 commit comments