-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathvoi.py
280 lines (242 loc) · 9.18 KB
/
voi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
# coding=utf-8
# Evaluation code courtesy of Juan Nunez-Iglesias, taken from
# https://github.com/janelia-flyem/gala/blob/master/gala/evaluate.py
import numpy as np
import scipy.sparse as sparse
def voi(reconstruction, groundtruth, ignore_reconstruction=[], ignore_groundtruth=[0]):
"""Return the conditional entropies of the variation of information metric. [1]
Let X be a reconstruction, and Y a ground truth labelling. The variation of
information between the two is the sum of two conditional entropies:
VI(X, Y) = H(X|Y) + H(Y|X).
The first one, H(X|Y), is a measure of oversegmentation, the second one,
H(Y|X), a measure of undersegmentation. These measures are referred to as
the variation of information split or merge error, respectively.
Parameters
----------
seg : np.ndarray, int type, arbitrary shape
A candidate segmentation.
gt : np.ndarray, int type, same shape as `seg`
The ground truth segmentation.
ignore_seg, ignore_gt : list of int, optional
Any points having a label in this list are ignored in the evaluation.
By default, only the label 0 in the ground truth will be ignored.
Returns
-------
(split, merge) : float
The variation of information split and merge error, i.e., H(X|Y) and H(Y|X)
References
----------
[1] Meila, M. (2007). Comparing clusterings - an information based
distance. Journal of Multivariate Analysis 98, 873-895.
"""
(hyxg, hxgy) = split_vi(reconstruction, groundtruth, ignore_reconstruction, ignore_groundtruth)
return (hxgy, hyxg)
def split_vi(x, y=None, ignore_x=[0], ignore_y=[0]):
"""Return the symmetric conditional entropies associated with the VI.
The variation of information is defined as VI(X,Y) = H(X|Y) + H(Y|X).
If Y is the ground-truth segmentation, then H(Y|X) can be interpreted
as the amount of under-segmentation of Y and H(X|Y) is then the amount
of over-segmentation. In other words, a perfect over-segmentation
will have H(Y|X)=0 and a perfect under-segmentation will have H(X|Y)=0.
If y is None, x is assumed to be a contingency table.
Parameters
----------
x : np.ndarray
Label field (int type) or contingency table (float). `x` is
interpreted as a contingency table (summing to 1.0) if and only if `y`
is not provided.
y : np.ndarray of int, same shape as x, optional
A label field to compare to `x`.
ignore_x, ignore_y : list of int, optional
Any points having a label in this list are ignored in the evaluation.
Ignore 0-labeled points by default.
Returns
-------
sv : np.ndarray of float, shape (2,)
The conditional entropies of Y|X and X|Y.
See Also
--------
vi
"""
_, _, _ , hxgy, hygx, _, _ = vi_tables(x, y, ignore_x, ignore_y)
# false merges, false splits
return np.array([hygx.sum(), hxgy.sum()])
def vi_tables(x, y=None, ignore_x=[0], ignore_y=[0]):
"""Return probability tables used for calculating VI.
If y is None, x is assumed to be a contingency table.
Parameters
----------
x, y : np.ndarray
Either x and y are provided as equal-shaped np.ndarray label fields
(int type), or y is not provided and x is a contingency table
(sparse.csc_matrix) that may or may not sum to 1.
ignore_x, ignore_y : list of int, optional
Rows and columns (respectively) to ignore in the contingency table.
These are labels that are not counted when evaluating VI.
Returns
-------
pxy : sparse.csc_matrix of float
The normalized contingency table.
px, py, hxgy, hygx, lpygx, lpxgy : np.ndarray of float
The proportions of each label in `x` and `y` (`px`, `py`), the
per-segment conditional entropies of `x` given `y` and vice-versa, the
per-segment conditional probability p log p.
"""
if y is not None:
pxy = contingency_table(x, y, ignore_x, ignore_y)
else:
cont = x
total = float(cont.sum())
# normalize, since it is an identity op if already done
pxy = cont / total
# Calculate probabilities
px = np.array(pxy.sum(axis=1)).ravel()
py = np.array(pxy.sum(axis=0)).ravel()
# Remove zero rows/cols
nzx = px.nonzero()[0]
nzy = py.nonzero()[0]
nzpx = px[nzx]
nzpy = py[nzy]
nzpxy = pxy[nzx, :][:, nzy]
# Calculate log conditional probabilities and entropies
lpygx = np.zeros(np.shape(px))
lpygx[nzx] = xlogx(divide_rows(nzpxy, nzpx)).sum(axis=1).ravel()
# \sum_x{p_{y|x} \log{p_{y|x}}}
hygx = -(px*lpygx) # \sum_x{p_x H(Y|X=x)} = H(Y|X)
lpxgy = np.zeros(np.shape(py))
lpxgy[nzy] = xlogx(divide_columns(nzpxy, nzpy)).sum(axis=0).ravel()
hxgy = -(py*lpxgy)
return [pxy] + list(map(np.asarray, [px, py, hxgy, hygx, lpygx, lpxgy]))
def contingency_table(seg, gt, ignore_seg=[0], ignore_gt=[0], norm=True):
"""Return the contingency table for all regions in matched segmentations.
Parameters
----------
seg : np.ndarray, int type, arbitrary shape
A candidate segmentation.
gt : np.ndarray, int type, same shape as `seg`
The ground truth segmentation.
ignore_seg : list of int, optional
Values to ignore in `seg`. Voxels in `seg` having a value in this list
will not contribute to the contingency table. (default: [0])
ignore_gt : list of int, optional
Values to ignore in `gt`. Voxels in `gt` having a value in this list
will not contribute to the contingency table. (default: [0])
norm : bool, optional
Whether to normalize the table so that it sums to 1.
Returns
-------
cont : scipy.sparse.csc_matrix
A contingency table. `cont[i, j]` will equal the number of voxels
labeled `i` in `seg` and `j` in `gt`. (Or the proportion of such voxels
if `norm=True`.)
"""
segr = seg.ravel()
gtr = gt.ravel()
ignored = np.zeros(segr.shape, np.bool)
data = np.ones(len(gtr))
for i in ignore_seg:
ignored[segr == i] = True
for j in ignore_gt:
ignored[gtr == j] = True
data[ignored] = 0
cont = sparse.coo_matrix((data, (segr, gtr))).tocsc()
if norm:
cont /= float(cont.sum())
return cont
def divide_columns(matrix, row, in_place=False):
"""Divide each column of `matrix` by the corresponding element in `row`.
The result is as follows: out[i, j] = matrix[i, j] / row[j]
Parameters
----------
matrix : np.ndarray, scipy.sparse.csc_matrix or csr_matrix, shape (M, N)
The input matrix.
column : a 1D np.ndarray, shape (N,)
The row dividing `matrix`.
in_place : bool (optional, default False)
Do the computation in-place.
Returns
-------
out : same type as `matrix`
The result of the row-wise division.
"""
if in_place:
out = matrix
else:
out = matrix.copy()
if type(out) in [sparse.csc_matrix, sparse.csr_matrix]:
if type(out) == sparse.csc_matrix:
convert_to_csc = True
out = out.tocsr()
else:
convert_to_csc = False
row_repeated = np.take(row, out.indices)
nz = out.data.nonzero()
out.data[nz] /= row_repeated[nz]
if convert_to_csc:
out = out.tocsc()
else:
out /= row[np.newaxis, :]
return out
def divide_rows(matrix, column, in_place=False):
"""Divide each row of `matrix` by the corresponding element in `column`.
The result is as follows: out[i, j] = matrix[i, j] / column[i]
Parameters
----------
matrix : np.ndarray, scipy.sparse.csc_matrix or csr_matrix, shape (M, N)
The input matrix.
column : a 1D np.ndarray, shape (M,)
The column dividing `matrix`.
in_place : bool (optional, default False)
Do the computation in-place.
Returns
-------
out : same type as `matrix`
The result of the row-wise division.
"""
if in_place:
out = matrix
else:
out = matrix.copy()
if type(out) in [sparse.csc_matrix, sparse.csr_matrix]:
if type(out) == sparse.csr_matrix:
convert_to_csr = True
out = out.tocsc()
else:
convert_to_csr = False
column_repeated = np.take(column, out.indices)
nz = out.data.nonzero()
out.data[nz] /= column_repeated[nz]
if convert_to_csr:
out = out.tocsr()
else:
out /= column[:, np.newaxis]
return out
def xlogx(x, out=None, in_place=False):
"""Compute x * log_2(x).
We define 0 * log_2(0) = 0
Parameters
----------
x : np.ndarray or scipy.sparse.csc_matrix or csr_matrix
The input array.
out : same type as x (optional)
If provided, use this array/matrix for the result.
in_place : bool (optional, default False)
Operate directly on x.
Returns
-------
y : same type as x
Result of x * log_2(x).
"""
if in_place:
y = x
elif out is None:
y = x.copy()
else:
y = out
if type(y) in [sparse.csc_matrix, sparse.csr_matrix]:
z = y.data
else:
z = y
nz = z.nonzero()
z[nz] *= np.log2(z[nz])
return y