|
| 1 | +import os.path |
| 2 | +import logging |
| 3 | +import time |
| 4 | +from collections import OrderedDict |
| 5 | +import torch |
| 6 | + |
| 7 | +from utils import utils_logger |
| 8 | +from utils import utils_image as util |
| 9 | + |
| 10 | + |
| 11 | +''' |
| 12 | +This code can help you to calculate: |
| 13 | +`FLOPs`, `#Params`, `Runtime`, `#Activations`, `#Conv2d`, and `Max Memory Allocated`. |
| 14 | +
|
| 15 | +For more information, please refer to ECCVW paper "AIM 2020 Challenge on Efficient Super-Resolution: Methods and Results". |
| 16 | +
|
| 17 | +# If you use this code, please consider the following citations: |
| 18 | +
|
| 19 | +@inproceedings{zhang2020aim, |
| 20 | + title={AIM 2020 Challenge on Efficient Super-Resolution: Methods and Results}, |
| 21 | + author={Kai Zhang and Martin Danelljan and Yawei Li and Radu Timofte and others}, |
| 22 | + booktitle={European Conference on Computer Vision Workshops}, |
| 23 | + year={2020} |
| 24 | +} |
| 25 | +@inproceedings{zhang2019aim, |
| 26 | + title={AIM 2019 Challenge on Constrained Super-Resolution: Methods and Results}, |
| 27 | + author={Kai Zhang and Shuhang Gu and Radu Timofte and others}, |
| 28 | + booktitle={IEEE International Conference on Computer Vision Workshops}, |
| 29 | + year={2019} |
| 30 | +} |
| 31 | +
|
| 32 | +CuDNN (https://developer.nvidia.com/rdp/cudnn-archive) should be installed. |
| 33 | +
|
| 34 | +For `Max Memery` and `Runtime`, set 'print_modelsummary = False' and 'save_results = False'. |
| 35 | +''' |
| 36 | + |
| 37 | + |
| 38 | + |
| 39 | + |
| 40 | +def main(): |
| 41 | + |
| 42 | + utils_logger.logger_info('efficientsr_challenge', log_path='efficientsr_challenge.log') |
| 43 | + logger = logging.getLogger('efficientsr_challenge') |
| 44 | + |
| 45 | +# print(torch.__version__) # pytorch version |
| 46 | +# print(torch.version.cuda) # cuda version |
| 47 | +# print(torch.backends.cudnn.version()) # cudnn version |
| 48 | + |
| 49 | + # -------------------------------- |
| 50 | + # basic settings |
| 51 | + # -------------------------------- |
| 52 | + model_names = ['msrresnet', 'imdn'] |
| 53 | + model_id = 1 # set the model name |
| 54 | + model_name = model_names[model_id] |
| 55 | + logger.info('{:>16s} : {:s}'.format('Model Name', model_name)) |
| 56 | + |
| 57 | + testsets = 'testsets' # set path of testsets |
| 58 | + testset_L = 'DIV2K_valid_LR' # set current testing dataset; 'DIV2K_test_LR' |
| 59 | + testset_L = 'set12' |
| 60 | + |
| 61 | + save_results = True |
| 62 | + print_modelsummary = True # set False when calculating `Max Memery` and `Runtime` |
| 63 | + |
| 64 | + torch.cuda.set_device(0) # set GPU ID |
| 65 | + logger.info('{:>16s} : {:<d}'.format('GPU ID', torch.cuda.current_device())) |
| 66 | + torch.cuda.empty_cache() |
| 67 | + device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
| 68 | + |
| 69 | + # -------------------------------- |
| 70 | + # define network and load model |
| 71 | + # -------------------------------- |
| 72 | + if model_name == 'msrresnet': |
| 73 | + from models.network_msrresnet import MSRResNet1 as net |
| 74 | + model = net(in_nc=3, out_nc=3, nc=64, nb=16, upscale=4) # define network |
| 75 | + model_path = os.path.join('model_zoo', 'msrresnet_x4_psnr.pth') # set model path |
| 76 | + elif model_name == 'imdn': |
| 77 | + from models.network_imdn import IMDN as net |
| 78 | + model = net(in_nc=3, out_nc=3, nc=64, nb=8, upscale=4, act_mode='L', upsample_mode='pixelshuffle') # define network |
| 79 | + model_path = os.path.join('model_zoo', 'imdn_x4.pth') # set model path |
| 80 | + |
| 81 | + model.load_state_dict(torch.load(model_path), strict=True) |
| 82 | + model.eval() |
| 83 | + for k, v in model.named_parameters(): |
| 84 | + v.requires_grad = False |
| 85 | + model = model.to(device) |
| 86 | + |
| 87 | + # -------------------------------- |
| 88 | + # print model summary |
| 89 | + # -------------------------------- |
| 90 | + if print_modelsummary: |
| 91 | + from utils.utils_modelsummary import get_model_activation, get_model_flops |
| 92 | + input_dim = (3, 256, 256) # set the input dimension |
| 93 | + |
| 94 | + activations, num_conv2d = get_model_activation(model, input_dim) |
| 95 | + logger.info('{:>16s} : {:<.4f} [M]'.format('#Activations', activations/10**6)) |
| 96 | + logger.info('{:>16s} : {:<d}'.format('#Conv2d', num_conv2d)) |
| 97 | + |
| 98 | + flops = get_model_flops(model, input_dim, False) |
| 99 | + logger.info('{:>16s} : {:<.4f} [G]'.format('FLOPs', flops/10**9)) |
| 100 | + |
| 101 | + num_parameters = sum(map(lambda x: x.numel(), model.parameters())) |
| 102 | + logger.info('{:>16s} : {:<.4f} [M]'.format('#Params', num_parameters/10**6)) |
| 103 | + |
| 104 | + # -------------------------------- |
| 105 | + # read image |
| 106 | + # -------------------------------- |
| 107 | + L_path = os.path.join(testsets, testset_L) |
| 108 | + E_path = os.path.join(testsets, testset_L+'_'+model_name) |
| 109 | + util.mkdir(E_path) |
| 110 | + |
| 111 | + # record runtime |
| 112 | + test_results = OrderedDict() |
| 113 | + test_results['runtime'] = [] |
| 114 | + |
| 115 | + logger.info('{:>16s} : {:s}'.format('Input Path', L_path)) |
| 116 | + logger.info('{:>16s} : {:s}'.format('Output Path', E_path)) |
| 117 | + idx = 0 |
| 118 | + |
| 119 | + start = torch.cuda.Event(enable_timing=True) |
| 120 | + end = torch.cuda.Event(enable_timing=True) |
| 121 | + |
| 122 | + for img in util.get_image_paths(L_path): |
| 123 | + |
| 124 | + # -------------------------------- |
| 125 | + # (1) img_L |
| 126 | + # -------------------------------- |
| 127 | + idx += 1 |
| 128 | + img_name, ext = os.path.splitext(os.path.basename(img)) |
| 129 | + logger.info('{:->4d}--> {:>10s}'.format(idx, img_name+ext)) |
| 130 | + |
| 131 | + img_L = util.imread_uint(img, n_channels=3) |
| 132 | + img_L = util.uint2tensor4(img_L) |
| 133 | + torch.cuda.empty_cache() |
| 134 | + img_L = img_L.to(device) |
| 135 | + |
| 136 | + start.record() |
| 137 | + img_E = model(img_L) |
| 138 | + # logger.info('{:>16s} : {:<.3f} [M]'.format('Max Memery', torch.cuda.max_memory_allocated(torch.cuda.current_device())/1024**2)) # Memery |
| 139 | + end.record() |
| 140 | + torch.cuda.synchronize() |
| 141 | + test_results['runtime'].append(start.elapsed_time(end)) # milliseconds |
| 142 | + |
| 143 | + |
| 144 | +# torch.cuda.synchronize() |
| 145 | +# start = time.time() |
| 146 | +# img_E = model(img_L) |
| 147 | +# torch.cuda.synchronize() |
| 148 | +# end = time.time() |
| 149 | +# test_results['runtime'].append(end-start) # seconds |
| 150 | + |
| 151 | + # -------------------------------- |
| 152 | + # (2) img_E |
| 153 | + # -------------------------------- |
| 154 | + img_E = util.tensor2uint(img_E) |
| 155 | + |
| 156 | + if save_results: |
| 157 | + util.imsave(img_E, os.path.join(E_path, img_name+ext)) |
| 158 | + ave_runtime = sum(test_results['runtime']) / len(test_results['runtime']) / 1000.0 |
| 159 | + logger.info('------> Average runtime of ({}) is : {:.6f} seconds'.format(L_path, ave_runtime)) |
| 160 | + |
| 161 | + |
| 162 | +if __name__ == '__main__': |
| 163 | + |
| 164 | + main() |
0 commit comments