This repository was archived by the owner on May 17, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 278
/
Copy pathtable_segment.py
286 lines (216 loc) · 11.6 KB
/
table_segment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import time
from typing import Container, Dict, List, Optional, Sequence, Tuple
import logging
from itertools import product
import attrs
from typing_extensions import Self
from data_diff.utils import safezip, Vector
from data_diff.utils import ArithString, split_space
from data_diff.databases.base import Database
from data_diff.abcs.database_types import DbPath, DbKey, DbTime, IKey
from data_diff.schema import RawColumnInfo, Schema, create_schema
from data_diff.queries.extras import Checksum
from data_diff.queries.api import Count, SKIP, table, this, Expr, min_, max_, Code
from data_diff.queries.extras import ApplyFuncAndNormalizeAsString, NormalizeAsString
logger = logging.getLogger("table_segment")
RECOMMENDED_CHECKSUM_DURATION = 20
def split_key_space(min_key: DbKey, max_key: DbKey, count: int) -> List[DbKey]:
assert min_key < max_key
if max_key - min_key <= count:
count = 1
if isinstance(min_key, ArithString):
assert type(min_key) is type(max_key)
checkpoints = min_key.range(max_key, count)
else:
checkpoints = split_space(min_key, max_key, count)
assert all(min_key < x < max_key for x in checkpoints)
return [min_key] + checkpoints + [max_key]
def int_product(nums: List[int]) -> int:
p = 1
for n in nums:
p *= n
return p
def split_compound_key_space(mn: Vector, mx: Vector, count: int) -> List[List[DbKey]]:
"""Returns a list of split-points for each key dimension, essentially returning an N-dimensional grid of split points."""
return [split_key_space(mn_k, mx_k, count) for mn_k, mx_k in safezip(mn, mx)]
def create_mesh_from_points(*values_per_dim: list) -> List[Tuple[Vector, Vector]]:
"""Given a list of values along each axis of N dimensional space,
return an array of boxes whose start-points & end-points align with the given values,
and together consitute a mesh filling that space entirely (within the bounds of the given values).
Assumes given values are already ordered ascending.
len(boxes) == ∏i( len(i)-1 )
Example:
::
>>> d1 = 'a', 'b', 'c'
>>> d2 = 1, 2, 3
>>> d3 = 'X', 'Y'
>>> create_mesh_from_points(d1, d2, d3)
[
[('a', 1, 'X'), ('b', 2, 'Y')],
[('a', 2, 'X'), ('b', 3, 'Y')],
[('b', 1, 'X'), ('c', 2, 'Y')],
[('b', 2, 'X'), ('c', 3, 'Y')]
]
"""
assert all(len(v) >= 2 for v in values_per_dim), values_per_dim
# Create tuples of (v1, v2) for each pair of adjacent values
ranges = [list(zip(values[:-1], values[1:])) for values in values_per_dim]
assert all(a <= b for r in ranges for a, b in r)
# Create a product of all the ranges
res = [tuple(Vector(a) for a in safezip(*r)) for r in product(*ranges)]
expected_len = int_product(len(v) - 1 for v in values_per_dim)
assert len(res) == expected_len, (len(res), expected_len)
return res
@attrs.define(frozen=True)
class TableSegment:
"""Signifies a segment of rows (and selected columns) within a table
Parameters:
database (Database): Database instance. See :meth:`connect`
table_path (:data:`DbPath`): Path to table in form of a tuple. e.g. `('my_dataset', 'table_name')`
key_columns (Tuple[str]): Name of the key column, which uniquely identifies each row (usually id)
update_column (str, optional): Name of updated column, which signals that rows changed.
Usually updated_at or last_update. Used by `min_update` and `max_update`.
extra_columns (Tuple[str, ...], optional): Extra columns to compare
min_key (:data:`Vector`, optional): Lowest key value, used to restrict the segment
max_key (:data:`Vector`, optional): Highest key value, used to restrict the segment
min_update (:data:`DbTime`, optional): Lowest update_column value, used to restrict the segment
max_update (:data:`DbTime`, optional): Highest update_column value, used to restrict the segment
where (str, optional): An additional 'where' expression to restrict the search space.
case_sensitive (bool): If false, the case of column names will adjust according to the schema. Default is true.
"""
# Location of table
database: Database
table_path: DbPath
# Columns
key_columns: Tuple[str, ...]
update_column: Optional[str] = None
extra_columns: Tuple[str, ...] = ()
ignored_columns: Container[str] = frozenset()
# Restrict the segment
min_key: Optional[Vector] = None
max_key: Optional[Vector] = None
min_update: Optional[DbTime] = None
max_update: Optional[DbTime] = None
where: Optional[str] = None
case_sensitive: Optional[bool] = True
_schema: Optional[Schema] = None
def __attrs_post_init__(self) -> None:
if not self.update_column and (self.min_update or self.max_update):
raise ValueError("Error: the min_update/max_update feature requires 'update_column' to be set.")
if self.min_key is not None and self.max_key is not None and self.min_key >= self.max_key:
raise ValueError(f"Error: min_key expected to be smaller than max_key! ({self.min_key} >= {self.max_key})")
if self.min_update is not None and self.max_update is not None and self.min_update >= self.max_update:
raise ValueError(
f"Error: min_update expected to be smaller than max_update! ({self.min_update} >= {self.max_update})"
)
def _where(self) -> Optional[str]:
return f"({self.where})" if self.where else None
def _with_raw_schema(self, raw_schema: Dict[str, RawColumnInfo]) -> Self:
schema = self.database._process_table_schema(self.table_path, raw_schema, self.relevant_columns, self._where())
return self.new(schema=create_schema(self.database.name, self.table_path, schema, self.case_sensitive))
def with_schema(self) -> Self:
"Queries the table schema from the database, and returns a new instance of TableSegment, with a schema."
if self._schema:
return self
return self._with_raw_schema(self.database.query_table_schema(self.table_path))
def get_schema(self) -> Dict[str, RawColumnInfo]:
return self.database.query_table_schema(self.table_path)
def _make_key_range(self):
if self.min_key is not None:
for mn, k in safezip(self.min_key, self.key_columns):
yield mn <= this[k]
if self.max_key is not None:
for k, mx in safezip(self.key_columns, self.max_key):
yield this[k] < mx
def _make_update_range(self):
if self.min_update is not None:
yield self.min_update <= this[self.update_column]
if self.max_update is not None:
yield this[self.update_column] < self.max_update
@property
def source_table(self):
return table(*self.table_path, schema=self._schema)
def make_select(self):
return self.source_table.where(
*self._make_key_range(), *self._make_update_range(), Code(self._where()) if self.where else SKIP
)
def get_values(self) -> list:
"Download all the relevant values of the segment from the database"
# Fetch all the original columns, even if some were later excluded from checking.
fetched_cols = [NormalizeAsString(this[c]) for c in self.relevant_columns]
select = self.make_select().select(*fetched_cols)
return self.database.query(select, List[Tuple])
def choose_checkpoints(self, count: int) -> List[List[DbKey]]:
"Suggests a bunch of evenly-spaced checkpoints to split by, including start, end."
assert self.is_bounded
# Take Nth root of count, to approximate the appropriate box size
count = int(count ** (1 / len(self.key_columns))) or 1
return split_compound_key_space(self.min_key, self.max_key, count)
def segment_by_checkpoints(self, checkpoints: List[List[DbKey]]) -> List["TableSegment"]:
"Split the current TableSegment to a bunch of smaller ones, separated by the given checkpoints"
return [self.new_key_bounds(min_key=s, max_key=e) for s, e in create_mesh_from_points(*checkpoints)]
def new(self, **kwargs) -> Self:
"""Creates a copy of the instance using 'replace()'"""
return attrs.evolve(self, **kwargs)
def new_key_bounds(self, min_key: Vector, max_key: Vector, *, key_types: Optional[Sequence[IKey]] = None) -> Self:
if self.min_key is not None:
assert self.min_key <= min_key, (self.min_key, min_key)
assert self.min_key < max_key
if self.max_key is not None:
assert min_key < self.max_key
assert max_key <= self.max_key
# If asked, enforce the PKs to proper types, mainly to meta-params of the relevant side,
# so that we do not leak e.g. casing of UUIDs from side A to side B and vice versa.
# If not asked, keep the meta-params of the keys as is (assume them already casted).
if key_types is not None:
min_key = Vector(type.make_value(val) for type, val in safezip(key_types, min_key))
max_key = Vector(type.make_value(val) for type, val in safezip(key_types, max_key))
return attrs.evolve(self, min_key=min_key, max_key=max_key)
@property
def relevant_columns(self) -> List[str]:
extras = list(self.extra_columns)
if self.update_column and self.update_column not in extras:
extras = [self.update_column] + extras
return list(self.key_columns) + extras
def count(self) -> int:
"""Count how many rows are in the segment, in one pass."""
return self.database.query(self.make_select().select(Count()), int)
def count_and_checksum(self) -> Tuple[int, int]:
"""Count and checksum the rows in the segment, in one pass."""
checked_columns = [c for c in self.relevant_columns if c not in self.ignored_columns]
cols = [NormalizeAsString(this[c]) for c in checked_columns]
start = time.monotonic()
q = self.make_select().select(Count(), Checksum(cols))
count, checksum = self.database.query(q, tuple)
duration = time.monotonic() - start
if duration > RECOMMENDED_CHECKSUM_DURATION:
logger.warning(
"Checksum is taking longer than expected (%.2f). "
"We recommend increasing --bisection-factor or decreasing --threads.",
duration,
)
if count:
assert checksum, (count, checksum)
return count or 0, int(checksum) if count else None
def query_key_range(self) -> Tuple[tuple, tuple]:
"""Query database for minimum and maximum key. This is used for setting the initial bounds."""
# Normalizes the result (needed for UUIDs) after the min/max computation
select = self.make_select().select(
ApplyFuncAndNormalizeAsString(this[k], f) for k in self.key_columns for f in (min_, max_)
)
result = tuple(self.database.query(select, tuple))
if any(i is None for i in result):
raise ValueError("Table appears to be empty")
# Min/max keys are interleaved
min_key, max_key = result[::2], result[1::2]
assert len(min_key) == len(max_key)
return min_key, max_key
@property
def is_bounded(self):
return self.min_key is not None and self.max_key is not None
def approximate_size(self):
if not self.is_bounded:
raise RuntimeError("Cannot approximate the size of an unbounded segment. Must have min_key and max_key.")
diff = self.max_key - self.min_key
assert all(d > 0 for d in diff)
return int_product(diff)