-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFloydWarshalls.cpp
75 lines (64 loc) · 1.84 KB
/
FloydWarshalls.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
#include<bits/stdc++.h>
using namespace std;
#define V 4
#define INF 10000
void printSolution(int [][V]);
void floydWarshall(int [][V]);
int main()
{
/**
Consider the following weighted graph:
10
(0)------->(3)
| /|\
5 | |
| | 1
'\|/ |
(1)------->(2)
3
**/
int graph[V][V] = { {0, 5, INF, 10},
{INF, 0, 3, INF},
{INF, INF, 0, 1},
{INF, INF, INF, 0}
};
floydWarshall(graph);
return 0;
}
void floydWarshall (int graph[][V]) {
int dist[V][V], i, j, k;
for(i = 0; i < V; i++)
for(j = 0; j < V; j++)
dist[i][j] = graph[i][j];
/** k for: via node **/
for(k = 0; k < V; k++) {
/** i for: source node **/
for(i = 0; i < V; i++) {
/** j for: destination node **/
for (j = 0; j < V; j++) {
/**
if
(source, via) + (via, destination) < (source, destination)
then update,
(source, destination) = (source, via) + (via, destination)
**/
if (dist[i][k] + dist[k][j] < dist[i][j]) {
dist[i][j] = dist[i][k] + dist[k][j];
}
}
}
}
printSolution(dist);
}
void printSolution(int dist[][V]) {
printf("The shortest distances between every pair of vertices is:\n");
for (int i = 0; i < V; i++) {
for (int j = 0; j < V; j++) {
if (dist[i][j] == INF)
printf("%7s", "INF");
else
printf ("%7d", dist[i][j]);
}
printf("\n");
}
}