You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
/// <param name="featureColumnName">The name of the feature column.</param>
46
+
/// <param name="featureColumnName">The name of the feature column. The column data must be a known-sized vector of <see cref="System.Single"/>.</param>
47
47
/// <param name="exampleWeightColumnName">The name of the example weight column (optional).</param>
48
48
/// <param name="rank">The number of components in the PCA.</param>
49
49
/// <param name="oversampling">Oversampling parameter for randomized PCA training.</param>
@@ -69,7 +69,7 @@ public static RandomizedPcaTrainer RandomizedPca(this AnomalyDetectionCatalog.An
69
69
}
70
70
71
71
/// <summary>
72
-
/// Trains an approximate principal component analysis (PCA) model using randomized SVD algorithm.
72
+
/// TCreates a <see cref="RandomizedPcaTrainer"/>, which trains an approximate principal component analysis (PCA) model using randomized SVD algorithm with advanced options.
/// The <see cref="IEstimator{TTransformer}"/> for training an approximate PCA using Randomized SVD algorithm.
38
37
/// </summary>
39
38
/// <remarks>
40
-
/// This PCA can be made into Kernel PCA by using Random Fourier Features transform
39
+
/// <format type="text/markdown"><)
41
+
/// or [RandomizedPca(Options)](xref:Microsoft.ML.PcaCatalog.RandomizedPca(Microsoft.ML.AnomalyDetectionCatalog.AnomalyDetectionTrainers,Microsoft.ML.Trainers.RandomizedPcaTrainer.Options)).
/// | Required NuGet in addition to Microsoft.ML | None |
52
+
///
53
+
/// ### Training Algorithm Details
54
+
/// This PCA can be made into Kernel PCA by using Random Fourier Features transform. [Reference](https://web.stanford.edu/group/mmds/slides2010/Martinsson.pdf)
0 commit comments