1
1
using System ;
2
2
using System . Collections . Generic ;
3
3
using System . Linq ;
4
+ using Microsoft . ML ;
4
5
using Microsoft . ML . Data ;
5
6
6
- namespace Microsoft . ML . Samples . Dynamic
7
+ namespace Samples . Dynamic
7
8
{
8
9
public static class ProjectionTransforms
9
10
{
@@ -14,7 +15,7 @@ public static void Example()
14
15
var ml = new MLContext ( ) ;
15
16
16
17
// Get a small dataset as an IEnumerable and convert it to an IDataView.
17
- IEnumerable < SamplesUtils . DatasetUtils . SampleVectorOfNumbersData > data = SamplesUtils . DatasetUtils . GetVectorOfNumbersData ( ) ;
18
+ IEnumerable < Microsoft . ML . SamplesUtils . DatasetUtils . SampleVectorOfNumbersData > data = Microsoft . ML . SamplesUtils . DatasetUtils . GetVectorOfNumbersData ( ) ;
18
19
var trainData = ml . Data . LoadFromEnumerable ( data ) ;
19
20
20
21
// Preview of the data.
@@ -37,13 +38,13 @@ public static void Example()
37
38
} ;
38
39
39
40
// A pipeline to project Features column into Random fourier space.
40
- var rffPipeline = ml . Transforms . ApproximatedKernelMap ( nameof ( SamplesUtils . DatasetUtils . SampleVectorOfNumbersData . Features ) , rank : 4 ) ;
41
+ var rffPipeline = ml . Transforms . ApproximatedKernelMap ( nameof ( Microsoft . ML . SamplesUtils . DatasetUtils . SampleVectorOfNumbersData . Features ) , rank : 4 ) ;
41
42
// The transformed (projected) data.
42
43
var transformedData = rffPipeline . Fit ( trainData ) . Transform ( trainData ) ;
43
44
// Getting the data of the newly created column, so we can preview it.
44
- var randomFourier = transformedData . GetColumn < VBuffer < float > > ( transformedData . Schema [ nameof ( SamplesUtils . DatasetUtils . SampleVectorOfNumbersData . Features ) ] ) ;
45
+ var randomFourier = transformedData . GetColumn < VBuffer < float > > ( transformedData . Schema [ nameof ( Microsoft . ML . SamplesUtils . DatasetUtils . SampleVectorOfNumbersData . Features ) ] ) ;
45
46
46
- printHelper ( nameof ( SamplesUtils . DatasetUtils . SampleVectorOfNumbersData . Features ) , randomFourier ) ;
47
+ printHelper ( nameof ( Microsoft . ML . SamplesUtils . DatasetUtils . SampleVectorOfNumbersData . Features ) , randomFourier ) ;
47
48
48
49
// Features column obtained post-transformation.
49
50
//
@@ -55,13 +56,15 @@ public static void Example()
55
56
//0.165 0.117 -0.547 0.014
56
57
57
58
// A pipeline to project Features column into L-p normalized vector.
58
- var lpNormalizePipeline = ml . Transforms . NormalizeLpNorm ( nameof ( SamplesUtils . DatasetUtils . SampleVectorOfNumbersData . Features ) , norm : Transforms . LpNormNormalizingEstimatorBase . NormFunction . L1 ) ;
59
+ var lpNormalizePipeline = ml . Transforms . NormalizeLpNorm ( nameof ( Microsoft . ML . SamplesUtils . DatasetUtils . SampleVectorOfNumbersData . Features ) ,
60
+ norm : Microsoft . ML . Transforms . LpNormNormalizingEstimatorBase . NormFunction . L1 ) ;
61
+
59
62
// The transformed (projected) data.
60
63
transformedData = lpNormalizePipeline . Fit ( trainData ) . Transform ( trainData ) ;
61
64
// Getting the data of the newly created column, so we can preview it.
62
- var lpNormalize = transformedData . GetColumn < VBuffer < float > > ( transformedData . Schema [ nameof ( SamplesUtils . DatasetUtils . SampleVectorOfNumbersData . Features ) ] ) ;
65
+ var lpNormalize = transformedData . GetColumn < VBuffer < float > > ( transformedData . Schema [ nameof ( Microsoft . ML . SamplesUtils . DatasetUtils . SampleVectorOfNumbersData . Features ) ] ) ;
63
66
64
- printHelper ( nameof ( SamplesUtils . DatasetUtils . SampleVectorOfNumbersData . Features ) , lpNormalize ) ;
67
+ printHelper ( nameof ( Microsoft . ML . SamplesUtils . DatasetUtils . SampleVectorOfNumbersData . Features ) , lpNormalize ) ;
65
68
66
69
// Features column obtained post-transformation.
67
70
//
@@ -73,13 +76,13 @@ public static void Example()
73
76
// 0.133 0.156 0.178 0.200 0.000 0.022 0.044 0.067 0.089 0.111
74
77
75
78
// A pipeline to project Features column into L-p normalized vector.
76
- var gcNormalizePipeline = ml . Transforms . NormalizeGlobalContrast ( nameof ( SamplesUtils . DatasetUtils . SampleVectorOfNumbersData . Features ) , ensureZeroMean : false ) ;
79
+ var gcNormalizePipeline = ml . Transforms . NormalizeGlobalContrast ( nameof ( Microsoft . ML . SamplesUtils . DatasetUtils . SampleVectorOfNumbersData . Features ) , ensureZeroMean : false ) ;
77
80
// The transformed (projected) data.
78
81
transformedData = gcNormalizePipeline . Fit ( trainData ) . Transform ( trainData ) ;
79
82
// Getting the data of the newly created column, so we can preview it.
80
- var gcNormalize = transformedData . GetColumn < VBuffer < float > > ( transformedData . Schema [ nameof ( SamplesUtils . DatasetUtils . SampleVectorOfNumbersData . Features ) ] ) ;
83
+ var gcNormalize = transformedData . GetColumn < VBuffer < float > > ( transformedData . Schema [ nameof ( Microsoft . ML . SamplesUtils . DatasetUtils . SampleVectorOfNumbersData . Features ) ] ) ;
81
84
82
- printHelper ( nameof ( SamplesUtils . DatasetUtils . SampleVectorOfNumbersData . Features ) , gcNormalize ) ;
85
+ printHelper ( nameof ( Microsoft . ML . SamplesUtils . DatasetUtils . SampleVectorOfNumbersData . Features ) , gcNormalize ) ;
83
86
84
87
// Features column obtained post-transformation.
85
88
//
0 commit comments