Skip to content

Commit 30741e9

Browse files
committed
XML documentation for Poisson Regression trainer.
1 parent 270df4f commit 30741e9

File tree

2 files changed

+25
-7
lines changed

2 files changed

+25
-7
lines changed

src/Microsoft.ML.StandardTrainers/Standard/PoissonRegression/PoissonRegression.cs

+21-3
Original file line numberDiff line numberDiff line change
@@ -28,12 +28,30 @@ namespace Microsoft.ML.Trainers
2828
/// The <see cref="IEstimator{TTransformer}"/> for training a Poisson regression model.
2929
/// </summary>
3030
/// <remarks>
31-
/// <a href='https://en.wikipedia.org/wiki/Poisson_regression'>Poisson regression</a> is a parameterized regression method.
31+
/// <format type="text/markdown"><![CDATA[
32+
/// To create this trainer, use [LbfgsPoissonRegression](xref:Microsoft.ML.StandardTrainersCatalog.LbfgsPoissonRegression(Microsoft.ML.RegressionCatalog.RegressionTrainers,System.String,System.String,System.String,System.Single,System.Single,System.Single,System.Int32,System.Boolean))
33+
/// or [LbfgsPoissonRegression(Options)](xref:Microsoft.ML.StandardTrainersCatalog.LbfgsPoissonRegression(Microsoft.ML.RegressionCatalog.RegressionTrainers,Microsoft.ML.Trainers.LbfgsPoissonRegressionTrainer.Options)).
34+
///
35+
/// [!include[io](~/../docs/samples/docs/api-reference/io-columns-regression.md)]
36+
///
37+
/// ### Trainer Characteristics
38+
/// | | |
39+
/// | -- | -- |
40+
/// | Machine learning task | Regression |
41+
/// | Is normalization required? | Yes |
42+
/// | Is caching required? | No |
43+
/// | Required NuGet in addition to Microsoft.ML | None |
44+
///
45+
/// ### Training Algorithm Details
46+
/// [Poisson regression](https://en.wikipedia.org/wiki/Poisson_regression) is a parameterized regression method.
3247
/// It assumes that the log of the conditional mean of the dependent variable follows a linear function of the dependent variables.
3348
/// Assuming that the dependent variable follows a Poisson distribution, the regression parameters can be estimated by maximizing the likelihood of the obtained observations.
49+
/// ]]>
50+
/// </format>
3451
/// </remarks>
35-
/// <seealso cref="StandardTrainersCatalog.LbfgsPoissonRegression(RegressionCatalog.RegressionTrainers, string, string, string, float, float, float, int, bool)"/>
36-
/// <seealso cref="StandardTrainersCatalog.LbfgsPoissonRegression(RegressionCatalog.RegressionTrainers, Options)"/>
52+
/// <seealso cref="Microsoft.ML.StandardTrainersCatalog.LbfgsPoissonRegression(Microsoft.ML.RegressionCatalog.RegressionTrainers,System.String,System.String,System.String,System.Single,System.Single,System.Single,System.Int32,System.Boolean)"/>
53+
/// <seealso cref="Microsoft.ML.StandardTrainersCatalog.LbfgsPoissonRegression(Microsoft.ML.RegressionCatalog.RegressionTrainers,Microsoft.ML.Trainers.LbfgsPoissonRegressionTrainer.Options)"/>
54+
/// <seealso cref="Options"/>
3755
public sealed class LbfgsPoissonRegressionTrainer : LbfgsTrainerBase<LbfgsPoissonRegressionTrainer.Options, RegressionPredictionTransformer<PoissonRegressionModelParameters>, PoissonRegressionModelParameters>
3856
{
3957
internal const string LoadNameValue = "PoissonRegression";

src/Microsoft.ML.StandardTrainers/StandardTrainersCatalog.cs

+4-4
Original file line numberDiff line numberDiff line change
@@ -573,11 +573,11 @@ public static LbfgsLogisticRegressionBinaryTrainer LbfgsLogisticRegression(this
573573
}
574574

575575
/// <summary>
576-
/// Predict a target using a linear regression model trained with the <see cref="Microsoft.ML.Trainers.LbfgsPoissonRegressionTrainer"/> trainer.
576+
/// Creates a <see cref="Microsoft.ML.Trainers.LbfgsPoissonRegressionTrainer"/>, which predicts a target using a linear regression model.
577577
/// </summary>
578578
/// <param name="catalog">The regression catalog trainer object.</param>
579-
/// <param name="labelColumnName">The name of the label column.</param>
580-
/// <param name="featureColumnName">The name of the feature column.</param>
579+
/// <param name="labelColumnName">The name of the label column. The column data must be <see cref="System.Single"/></param>
580+
/// <param name="featureColumnName">The name of the feature column. The column data must be a known-sized vector of <see cref="System.Single"/></param>
581581
/// <param name="exampleWeightColumnName">The name of the example weight column (optional).</param>
582582
/// <param name="l1Regularization">The L1 <a href='https://en.wikipedia.org/wiki/Regularization_(mathematics)'>regularization</a> hyperparameter. Higher values will tend to lead to more sparse model.</param>
583583
/// <param name="l2Regularization">The L2 weight for <a href='https://en.wikipedia.org/wiki/Regularization_(mathematics)'>regularization</a>.</param>
@@ -606,7 +606,7 @@ public static LbfgsPoissonRegressionTrainer LbfgsPoissonRegression(this Regressi
606606
}
607607

608608
/// <summary>
609-
/// Predict a target using a linear regression model trained with the <see cref="Microsoft.ML.Trainers.LbfgsPoissonRegressionTrainer"/> and advanced options.
609+
/// Creates a <see cref="Microsoft.ML.Trainers.LbfgsPoissonRegressionTrainer"/>, which predicts a target using a linear regression model with advanced options.
610610
/// </summary>
611611
/// <param name="catalog">The regression catalog trainer object.</param>
612612
/// <param name="options">Trainer options.</param>

0 commit comments

Comments
 (0)