Skip to content

Commit 4f70f3e

Browse files
committed
entrypoint catalog and some fixes after bulk renaming
1 parent e7f61dc commit 4f70f3e

File tree

4 files changed

+14
-14
lines changed

4 files changed

+14
-14
lines changed

test/BaselineOutput/Common/EntryPoints/core_ep-list.tsv

+7-7
Original file line numberDiff line numberDiff line change
@@ -8,15 +8,15 @@ Models.AnomalyPipelineEnsemble Combine anomaly detection models into an ensemble
88
Models.BinaryClassificationEvaluator Evaluates a binary classification scored dataset. Microsoft.ML.Data.Evaluate Binary Microsoft.ML.Data.BinaryClassifierMamlEvaluator+Arguments Microsoft.ML.EntryPoints.CommonOutputs+ClassificationEvaluateOutput
99
Models.BinaryEnsemble Combine binary classifiers into an ensemble Microsoft.ML.Trainers.Ensemble.EnsembleCreator CreateBinaryEnsemble Microsoft.ML.Trainers.Ensemble.EnsembleCreator+ClassifierInput Microsoft.ML.EntryPoints.CommonOutputs+BinaryClassificationOutput
1010
Models.BinaryPipelineEnsemble Combine binary classification models into an ensemble Microsoft.ML.Trainers.Ensemble.EnsembleCreator CreateBinaryPipelineEnsemble Microsoft.ML.Trainers.Ensemble.EnsembleCreator+PipelineClassifierInput Microsoft.ML.EntryPoints.CommonOutputs+BinaryClassificationOutput
11-
Models.ClassificationEvaluator Evaluates a multi class classification scored dataset. Microsoft.ML.Data.Evaluate MultiClass Microsoft.ML.Data.MultiClassMamlEvaluator+Arguments Microsoft.ML.EntryPoints.CommonOutputs+ClassificationEvaluateOutput
11+
Models.ClassificationEvaluator Evaluates a multi class classification scored dataset. Microsoft.ML.Data.Evaluate Multiclass Microsoft.ML.Data.MulticlassClassificationMamlEvaluator+Arguments Microsoft.ML.EntryPoints.CommonOutputs+ClassificationEvaluateOutput
1212
Models.ClusterEvaluator Evaluates a clustering scored dataset. Microsoft.ML.Data.Evaluate Clustering Microsoft.ML.Data.ClusteringMamlEvaluator+Arguments Microsoft.ML.EntryPoints.CommonOutputs+CommonEvaluateOutput
1313
Models.CrossValidationResultsCombiner Combine the metric data views returned from cross validation. Microsoft.ML.EntryPoints.CrossValidationMacro CombineMetrics Microsoft.ML.EntryPoints.CrossValidationMacro+CombineMetricsInput Microsoft.ML.EntryPoints.CrossValidationMacro+CombinedOutput
1414
Models.CrossValidator Cross validation for general learning Microsoft.ML.EntryPoints.CrossValidationMacro CrossValidate Microsoft.ML.EntryPoints.CrossValidationMacro+Arguments Microsoft.ML.EntryPoints.CommonOutputs+MacroOutput`1[Microsoft.ML.EntryPoints.CrossValidationMacro+Output]
1515
Models.CrossValidatorDatasetSplitter Split the dataset into the specified number of cross-validation folds (train and test sets) Microsoft.ML.EntryPoints.CVSplit Split Microsoft.ML.EntryPoints.CVSplit+Input Microsoft.ML.EntryPoints.CVSplit+Output
1616
Models.DatasetTransformer Applies a TransformModel to a dataset. Microsoft.ML.EntryPoints.ModelOperations Apply Microsoft.ML.EntryPoints.ModelOperations+ApplyTransformModelInput Microsoft.ML.EntryPoints.ModelOperations+ApplyTransformModelOutput
1717
Models.EnsembleSummary Summarize a pipeline ensemble predictor. Microsoft.ML.Trainers.Ensemble.PipelineEnsemble Summarize Microsoft.ML.EntryPoints.SummarizePredictor+Input Microsoft.ML.Trainers.Ensemble.PipelineEnsemble+SummaryOutput
1818
Models.FixedPlattCalibrator Apply a Platt calibrator with a fixed slope and offset to an input model Microsoft.ML.Calibrators.Calibrate FixedPlatt Microsoft.ML.Calibrators.Calibrate+FixedPlattInput Microsoft.ML.EntryPoints.CommonOutputs+CalibratorOutput
19-
Models.MultiClassPipelineEnsemble Combine multiclass classifiers into an ensemble Microsoft.ML.Trainers.Ensemble.EnsembleCreator CreateMultiClassPipelineEnsemble Microsoft.ML.Trainers.Ensemble.EnsembleCreator+PipelineClassifierInput Microsoft.ML.EntryPoints.CommonOutputs+MulticlassClassificationOutput
19+
Models.MultiClassPipelineEnsemble Combine multiclass classifiers into an ensemble Microsoft.ML.Trainers.Ensemble.EnsembleCreator CreateMulticlassPipelineEnsemble Microsoft.ML.Trainers.Ensemble.EnsembleCreator+PipelineClassifierInput Microsoft.ML.EntryPoints.CommonOutputs+MulticlassClassificationOutput
2020
Models.MultiOutputRegressionEvaluator Evaluates a multi output regression scored dataset. Microsoft.ML.Data.Evaluate MultiOutputRegression Microsoft.ML.Data.MultiOutputRegressionMamlEvaluator+Arguments Microsoft.ML.EntryPoints.CommonOutputs+CommonEvaluateOutput
2121
Models.NaiveCalibrator Apply a Naive calibrator to an input model Microsoft.ML.Calibrators.Calibrate Naive Microsoft.ML.Calibrators.Calibrate+NoArgumentsInput Microsoft.ML.EntryPoints.CommonOutputs+CalibratorOutput
2222
Models.OneVersusAll One-vs-All macro (OVA) Microsoft.ML.EntryPoints.OneVersusAllMacro OneVersusAll Microsoft.ML.EntryPoints.OneVersusAllMacro+Arguments Microsoft.ML.EntryPoints.CommonOutputs+MacroOutput`1[Microsoft.ML.EntryPoints.OneVersusAllMacro+Output]
@@ -41,7 +41,7 @@ TimeSeriesProcessingEntryPoints.SsaChangePointDetector This transform detects th
4141
TimeSeriesProcessingEntryPoints.SsaSpikeDetector This transform detects the spikes in a seasonal time-series using Singular Spectrum Analysis (SSA). Microsoft.ML.Transforms.TimeSeries.TimeSeriesProcessingEntryPoints SsaSpikeDetector Microsoft.ML.Transforms.TimeSeries.SsaSpikeDetector+Options Microsoft.ML.EntryPoints.CommonOutputs+TransformOutput
4242
Trainers.AveragedPerceptronBinaryClassifier Averaged Perceptron Binary Classifier. Microsoft.ML.Trainers.AveragedPerceptronTrainer TrainBinary Microsoft.ML.Trainers.AveragedPerceptronTrainer+Options Microsoft.ML.EntryPoints.CommonOutputs+BinaryClassificationOutput
4343
Trainers.EnsembleBinaryClassifier Train binary ensemble. Microsoft.ML.Trainers.Ensemble.Ensemble CreateBinaryEnsemble Microsoft.ML.Trainers.Ensemble.EnsembleTrainer+Arguments Microsoft.ML.EntryPoints.CommonOutputs+BinaryClassificationOutput
44-
Trainers.EnsembleClassification Train multiclass ensemble. Microsoft.ML.Trainers.Ensemble.Ensemble CreateMultiClassEnsemble Microsoft.ML.Trainers.Ensemble.MulticlassDataPartitionEnsembleTrainer+Arguments Microsoft.ML.EntryPoints.CommonOutputs+MulticlassClassificationOutput
44+
Trainers.EnsembleClassification Train multiclass ensemble. Microsoft.ML.Trainers.Ensemble.Ensemble CreateMulticlassEnsemble Microsoft.ML.Trainers.Ensemble.MulticlassDataPartitionEnsembleTrainer+Arguments Microsoft.ML.EntryPoints.CommonOutputs+MulticlassClassificationOutput
4545
Trainers.EnsembleRegression Train regression ensemble. Microsoft.ML.Trainers.Ensemble.Ensemble CreateRegressionEnsemble Microsoft.ML.Trainers.Ensemble.RegressionEnsembleTrainer+Arguments Microsoft.ML.EntryPoints.CommonOutputs+RegressionOutput
4646
Trainers.FastForestBinaryClassifier Uses a random forest learner to perform binary classification. Microsoft.ML.Trainers.FastTree.FastForest TrainBinary Microsoft.ML.Trainers.FastTree.FastForestClassification+Options Microsoft.ML.EntryPoints.CommonOutputs+BinaryClassificationOutput
4747
Trainers.FastForestRegressor Trains a random forest to fit target values using least-squares. Microsoft.ML.Trainers.FastTree.FastForest TrainRegression Microsoft.ML.Trainers.FastTree.FastForestRegression+Options Microsoft.ML.EntryPoints.CommonOutputs+RegressionOutput
@@ -54,19 +54,19 @@ Trainers.GeneralizedAdditiveModelBinaryClassifier Trains a gradient boosted stum
5454
Trainers.GeneralizedAdditiveModelRegressor Trains a gradient boosted stump per feature, on all features simultaneously, to fit target values using least-squares. It mantains no interactions between features. Microsoft.ML.Trainers.FastTree.Gam TrainRegression Microsoft.ML.Trainers.FastTree.RegressionGamTrainer+Options Microsoft.ML.EntryPoints.CommonOutputs+RegressionOutput
5555
Trainers.KMeansPlusPlusClusterer K-means is a popular clustering algorithm. With K-means, the data is clustered into a specified number of clusters in order to minimize the within-cluster sum of squares. K-means++ improves upon K-means by using a better method for choosing the initial cluster centers. Microsoft.ML.Trainers.KMeansPlusPlusTrainer TrainKMeans Microsoft.ML.Trainers.KMeansPlusPlusTrainer+Options Microsoft.ML.EntryPoints.CommonOutputs+ClusteringOutput
5656
Trainers.LightGbmBinaryClassifier Train a LightGBM binary classification model. Microsoft.ML.LightGBM.LightGbm TrainBinary Microsoft.ML.LightGBM.Options Microsoft.ML.EntryPoints.CommonOutputs+BinaryClassificationOutput
57-
Trainers.LightGbmClassifier Train a LightGBM multi class model. Microsoft.ML.LightGBM.LightGbm TrainMultiClass Microsoft.ML.LightGBM.Options Microsoft.ML.EntryPoints.CommonOutputs+MulticlassClassificationOutput
57+
Trainers.LightGbmClassifier Train a LightGBM multi class model. Microsoft.ML.LightGBM.LightGbm TrainMulticlass Microsoft.ML.LightGBM.Options Microsoft.ML.EntryPoints.CommonOutputs+MulticlassClassificationOutput
5858
Trainers.LightGbmRanker Train a LightGBM ranking model. Microsoft.ML.LightGBM.LightGbm TrainRanking Microsoft.ML.LightGBM.Options Microsoft.ML.EntryPoints.CommonOutputs+RankingOutput
5959
Trainers.LightGbmRegressor LightGBM Regression Microsoft.ML.LightGBM.LightGbm TrainRegression Microsoft.ML.LightGBM.Options Microsoft.ML.EntryPoints.CommonOutputs+RegressionOutput
6060
Trainers.LinearSvmBinaryClassifier Train a linear SVM. Microsoft.ML.Trainers.LinearSvmTrainer TrainLinearSvm Microsoft.ML.Trainers.LinearSvmTrainer+Options Microsoft.ML.EntryPoints.CommonOutputs+BinaryClassificationOutput
6161
Trainers.LogisticRegressionBinaryClassifier Logistic Regression is a method in statistics used to predict the probability of occurrence of an event and can be used as a classification algorithm. The algorithm predicts the probability of occurrence of an event by fitting data to a logistical function. Microsoft.ML.Trainers.LogisticRegression TrainBinary Microsoft.ML.Trainers.LogisticRegression+Options Microsoft.ML.EntryPoints.CommonOutputs+BinaryClassificationOutput
62-
Trainers.LogisticRegressionClassifier Logistic Regression is a method in statistics used to predict the probability of occurrence of an event and can be used as a classification algorithm. The algorithm predicts the probability of occurrence of an event by fitting data to a logistical function. Microsoft.ML.Trainers.LogisticRegression TrainMultiClass Microsoft.ML.Trainers.MulticlassLogisticRegression+Options Microsoft.ML.EntryPoints.CommonOutputs+MulticlassClassificationOutput
63-
Trainers.NaiveBayesClassifier Train a MultiClassNaiveBayesTrainer. Microsoft.ML.Trainers.MultiClassNaiveBayesTrainer TrainMultiClassNaiveBayesTrainer Microsoft.ML.Trainers.MultiClassNaiveBayesTrainer+Options Microsoft.ML.EntryPoints.CommonOutputs+MulticlassClassificationOutput
62+
Trainers.LogisticRegressionClassifier Logistic Regression is a method in statistics used to predict the probability of occurrence of an event and can be used as a classification algorithm. The algorithm predicts the probability of occurrence of an event by fitting data to a logistical function. Microsoft.ML.Trainers.LogisticRegression TrainMulticlass Microsoft.ML.Trainers.MulticlassLogisticRegression+Options Microsoft.ML.EntryPoints.CommonOutputs+MulticlassClassificationOutput
63+
Trainers.NaiveBayesClassifier Train a MulticlassNaiveBayesTrainer. Microsoft.ML.Trainers.MulticlassNaiveBayesTrainer TrainMulticlassNaiveBayesTrainer Microsoft.ML.Trainers.MulticlassNaiveBayesTrainer+Options Microsoft.ML.EntryPoints.CommonOutputs+MulticlassClassificationOutput
6464
Trainers.OnlineGradientDescentRegressor Train a Online gradient descent perceptron. Microsoft.ML.Trainers.OnlineGradientDescentTrainer TrainRegression Microsoft.ML.Trainers.OnlineGradientDescentTrainer+Options Microsoft.ML.EntryPoints.CommonOutputs+RegressionOutput
6565
Trainers.OrdinaryLeastSquaresRegressor Train an OLS regression model. Microsoft.ML.Trainers.OrdinaryLeastSquaresRegressionTrainer TrainRegression Microsoft.ML.Trainers.OrdinaryLeastSquaresRegressionTrainer+Options Microsoft.ML.EntryPoints.CommonOutputs+RegressionOutput
6666
Trainers.PcaAnomalyDetector Train an PCA Anomaly model. Microsoft.ML.Trainers.RandomizedPrincipalComponentAnalyzer TrainPcaAnomaly Microsoft.ML.Trainers.RandomizedPrincipalComponentAnalyzer+Options Microsoft.ML.EntryPoints.CommonOutputs+AnomalyDetectionOutput
6767
Trainers.PoissonRegressor Train an Poisson regression model. Microsoft.ML.Trainers.PoissonRegression TrainRegression Microsoft.ML.Trainers.PoissonRegression+Options Microsoft.ML.EntryPoints.CommonOutputs+RegressionOutput
6868
Trainers.StochasticDualCoordinateAscentBinaryClassifier Train an SDCA binary model. Microsoft.ML.Trainers.Sdca TrainBinary Microsoft.ML.Trainers.LegacySdcaBinaryTrainer+Options Microsoft.ML.EntryPoints.CommonOutputs+BinaryClassificationOutput
69-
Trainers.StochasticDualCoordinateAscentClassifier The SDCA linear multi-class classification trainer. Microsoft.ML.Trainers.Sdca TrainMultiClass Microsoft.ML.Trainers.SdcaMultiClassTrainer+Options Microsoft.ML.EntryPoints.CommonOutputs+MulticlassClassificationOutput
69+
Trainers.StochasticDualCoordinateAscentClassifier The SDCA linear multi-class classification trainer. Microsoft.ML.Trainers.Sdca TrainMulticlass Microsoft.ML.Trainers.SdcaMulticlassTrainer+Options Microsoft.ML.EntryPoints.CommonOutputs+MulticlassClassificationOutput
7070
Trainers.StochasticDualCoordinateAscentRegressor The SDCA linear regression trainer. Microsoft.ML.Trainers.Sdca TrainRegression Microsoft.ML.Trainers.SdcaRegressionTrainer+Options Microsoft.ML.EntryPoints.CommonOutputs+RegressionOutput
7171
Trainers.StochasticGradientDescentBinaryClassifier Train an Hogwild SGD binary model. Microsoft.ML.Trainers.LegacySgdBinaryTrainer TrainBinary Microsoft.ML.Trainers.LegacySgdBinaryTrainer+Options Microsoft.ML.EntryPoints.CommonOutputs+BinaryClassificationOutput
7272
Trainers.SymSgdBinaryClassifier Train a symbolic SGD. Microsoft.ML.Trainers.SymbolicStochasticGradientDescentClassificationTrainer TrainSymSgd Microsoft.ML.Trainers.SymbolicStochasticGradientDescentClassificationTrainer+Options Microsoft.ML.EntryPoints.CommonOutputs+BinaryClassificationOutput

test/BaselineOutput/Common/EntryPoints/core_manifest.json

+4-4
Original file line numberDiff line numberDiff line change
@@ -1311,7 +1311,7 @@
13111311
"Kind": "Enum",
13121312
"Values": [
13131313
"SignatureBinaryClassifierTrainer",
1314-
"SignatureMultiClassClassifierTrainer",
1314+
"SignatureMulticlassClassifierTrainer",
13151315
"SignatureRankerTrainer",
13161316
"SignatureRegressorTrainer",
13171317
"SignatureMultiOutputRegressorTrainer",
@@ -1502,7 +1502,7 @@
15021502
"Kind": "Enum",
15031503
"Values": [
15041504
"SignatureBinaryClassifierTrainer",
1505-
"SignatureMultiClassClassifierTrainer",
1505+
"SignatureMulticlassClassifierTrainer",
15061506
"SignatureRankerTrainer",
15071507
"SignatureRegressorTrainer",
15081508
"SignatureMultiOutputRegressorTrainer",
@@ -3177,7 +3177,7 @@
31773177
"Kind": "Enum",
31783178
"Values": [
31793179
"SignatureBinaryClassifierTrainer",
3180-
"SignatureMultiClassClassifierTrainer",
3180+
"SignatureMulticlassClassifierTrainer",
31813181
"SignatureRankerTrainer",
31823182
"SignatureRegressorTrainer",
31833183
"SignatureMultiOutputRegressorTrainer",
@@ -13981,7 +13981,7 @@
1398113981
},
1398213982
{
1398313983
"Name": "Trainers.NaiveBayesClassifier",
13984-
"Desc": "Train a MultiClassNaiveBayesTrainer.",
13984+
"Desc": "Train a MulticlassNaiveBayesTrainer.",
1398513985
"FriendlyName": "Multiclass Naive Bayes",
1398613986
"ShortName": "MNB",
1398713987
"Inputs": [

test/Microsoft.ML.Core.Tests/UnitTests/TestEntryPoints.cs

+2-2
Original file line numberDiff line numberDiff line change
@@ -4396,7 +4396,7 @@ public void TestCrossValidationMacroWithMulticlass()
43964396
},
43974397
'StratificationColumn': null,
43984398
'NumFolds': 2,
4399-
'Kind': 'SignatureMultiClassClassifierTrainer',
4399+
'Kind': 'SignatureMulticlassClassifierTrainer',
44004400
'LabelColumn': 'Label',
44014401
'WeightColumn': null,
44024402
'GroupColumn': null,
@@ -4623,7 +4623,7 @@ public void TestCrossValidationMacroMulticlassWithWarnings()
46234623
},
46244624
'StratificationColumn': 'Strat',
46254625
'NumFolds': 2,
4626-
'Kind': 'SignatureMultiClassClassifierTrainer',
4626+
'Kind': 'SignatureMulticlassClassifierTrainer',
46274627
'LabelColumn': 'Label',
46284628
'WeightColumn': null,
46294629
'GroupColumn': null,

test/Microsoft.ML.TestFramework/TestCommandBase.cs

+1-1
Original file line numberDiff line numberDiff line change
@@ -1190,7 +1190,7 @@ public void CommandTrainMlrWithStats()
11901190
const string loaderCmdline = @"loader=TextLoader{col=Label:TX:4 col=Features:R4:0-3 sep=,}";
11911191
string pathTrain = GetDataPath("iris.data");
11921192
OutputPath trainModel = ModelPath();
1193-
const string trainArgs = "tr=MulticlassLogisticRegression{maxiter=100 t=- stat=+} xf=Term{col=Label} seed=1";
1193+
const string trainArgs = "tr=MultiClassLogisticRegression{maxiter=100 t=- stat=+} xf=Term{col=Label} seed=1";
11941194
TestCore("train", pathTrain, loaderCmdline, trainArgs);
11951195

11961196
_step++;

0 commit comments

Comments
 (0)