You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: test/BaselineOutput/Common/EntryPoints/core_ep-list.tsv
+7-7
Original file line number
Diff line number
Diff line change
@@ -8,15 +8,15 @@ Models.AnomalyPipelineEnsemble Combine anomaly detection models into an ensemble
8
8
Models.BinaryClassificationEvaluatorEvaluates a binary classification scored dataset.Microsoft.ML.Data.EvaluateBinaryMicrosoft.ML.Data.BinaryClassifierMamlEvaluator+ArgumentsMicrosoft.ML.EntryPoints.CommonOutputs+ClassificationEvaluateOutput
9
9
Models.BinaryEnsembleCombine binary classifiers into an ensembleMicrosoft.ML.Trainers.Ensemble.EnsembleCreatorCreateBinaryEnsembleMicrosoft.ML.Trainers.Ensemble.EnsembleCreator+ClassifierInputMicrosoft.ML.EntryPoints.CommonOutputs+BinaryClassificationOutput
10
10
Models.BinaryPipelineEnsembleCombine binary classification models into an ensembleMicrosoft.ML.Trainers.Ensemble.EnsembleCreatorCreateBinaryPipelineEnsembleMicrosoft.ML.Trainers.Ensemble.EnsembleCreator+PipelineClassifierInputMicrosoft.ML.EntryPoints.CommonOutputs+BinaryClassificationOutput
11
-
Models.ClassificationEvaluatorEvaluates a multi class classification scored dataset.Microsoft.ML.Data.EvaluateMultiClassMicrosoft.ML.Data.MultiClassMamlEvaluator+ArgumentsMicrosoft.ML.EntryPoints.CommonOutputs+ClassificationEvaluateOutput
11
+
Models.ClassificationEvaluatorEvaluates a multi class classification scored dataset.Microsoft.ML.Data.EvaluateMulticlassMicrosoft.ML.Data.MulticlassClassificationMamlEvaluator+ArgumentsMicrosoft.ML.EntryPoints.CommonOutputs+ClassificationEvaluateOutput
12
12
Models.ClusterEvaluatorEvaluates a clustering scored dataset.Microsoft.ML.Data.EvaluateClusteringMicrosoft.ML.Data.ClusteringMamlEvaluator+ArgumentsMicrosoft.ML.EntryPoints.CommonOutputs+CommonEvaluateOutput
13
13
Models.CrossValidationResultsCombinerCombine the metric data views returned from cross validation.Microsoft.ML.EntryPoints.CrossValidationMacroCombineMetricsMicrosoft.ML.EntryPoints.CrossValidationMacro+CombineMetricsInputMicrosoft.ML.EntryPoints.CrossValidationMacro+CombinedOutput
14
14
Models.CrossValidatorCross validation for general learningMicrosoft.ML.EntryPoints.CrossValidationMacroCrossValidateMicrosoft.ML.EntryPoints.CrossValidationMacro+ArgumentsMicrosoft.ML.EntryPoints.CommonOutputs+MacroOutput`1[Microsoft.ML.EntryPoints.CrossValidationMacro+Output]
15
15
Models.CrossValidatorDatasetSplitterSplit the dataset into the specified number of cross-validation folds (train and test sets)Microsoft.ML.EntryPoints.CVSplitSplitMicrosoft.ML.EntryPoints.CVSplit+InputMicrosoft.ML.EntryPoints.CVSplit+Output
16
16
Models.DatasetTransformerApplies a TransformModel to a dataset.Microsoft.ML.EntryPoints.ModelOperationsApplyMicrosoft.ML.EntryPoints.ModelOperations+ApplyTransformModelInputMicrosoft.ML.EntryPoints.ModelOperations+ApplyTransformModelOutput
17
17
Models.EnsembleSummarySummarize a pipeline ensemble predictor.Microsoft.ML.Trainers.Ensemble.PipelineEnsembleSummarizeMicrosoft.ML.EntryPoints.SummarizePredictor+InputMicrosoft.ML.Trainers.Ensemble.PipelineEnsemble+SummaryOutput
18
18
Models.FixedPlattCalibratorApply a Platt calibrator with a fixed slope and offset to an input modelMicrosoft.ML.Calibrators.CalibrateFixedPlattMicrosoft.ML.Calibrators.Calibrate+FixedPlattInputMicrosoft.ML.EntryPoints.CommonOutputs+CalibratorOutput
19
-
Models.MultiClassPipelineEnsembleCombine multiclass classifiers into an ensembleMicrosoft.ML.Trainers.Ensemble.EnsembleCreatorCreateMultiClassPipelineEnsembleMicrosoft.ML.Trainers.Ensemble.EnsembleCreator+PipelineClassifierInputMicrosoft.ML.EntryPoints.CommonOutputs+MulticlassClassificationOutput
19
+
Models.MultiClassPipelineEnsembleCombine multiclass classifiers into an ensembleMicrosoft.ML.Trainers.Ensemble.EnsembleCreatorCreateMulticlassPipelineEnsembleMicrosoft.ML.Trainers.Ensemble.EnsembleCreator+PipelineClassifierInputMicrosoft.ML.EntryPoints.CommonOutputs+MulticlassClassificationOutput
20
20
Models.MultiOutputRegressionEvaluatorEvaluates a multi output regression scored dataset.Microsoft.ML.Data.EvaluateMultiOutputRegressionMicrosoft.ML.Data.MultiOutputRegressionMamlEvaluator+ArgumentsMicrosoft.ML.EntryPoints.CommonOutputs+CommonEvaluateOutput
21
21
Models.NaiveCalibratorApply a Naive calibrator to an input modelMicrosoft.ML.Calibrators.CalibrateNaiveMicrosoft.ML.Calibrators.Calibrate+NoArgumentsInputMicrosoft.ML.EntryPoints.CommonOutputs+CalibratorOutput
@@ -41,7 +41,7 @@ TimeSeriesProcessingEntryPoints.SsaChangePointDetector This transform detects th
41
41
TimeSeriesProcessingEntryPoints.SsaSpikeDetectorThis transform detects the spikes in a seasonal time-series using Singular Spectrum Analysis (SSA).Microsoft.ML.Transforms.TimeSeries.TimeSeriesProcessingEntryPointsSsaSpikeDetectorMicrosoft.ML.Transforms.TimeSeries.SsaSpikeDetector+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+TransformOutput
Trainers.FastForestBinaryClassifierUses a random forest learner to perform binary classification.Microsoft.ML.Trainers.FastTree.FastForestTrainBinaryMicrosoft.ML.Trainers.FastTree.FastForestClassification+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+BinaryClassificationOutput
47
47
Trainers.FastForestRegressorTrains a random forest to fit target values using least-squares.Microsoft.ML.Trainers.FastTree.FastForestTrainRegressionMicrosoft.ML.Trainers.FastTree.FastForestRegression+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+RegressionOutput
@@ -54,19 +54,19 @@ Trainers.GeneralizedAdditiveModelBinaryClassifier Trains a gradient boosted stum
54
54
Trainers.GeneralizedAdditiveModelRegressorTrains a gradient boosted stump per feature, on all features simultaneously, to fit target values using least-squares. It mantains no interactions between features.Microsoft.ML.Trainers.FastTree.GamTrainRegressionMicrosoft.ML.Trainers.FastTree.RegressionGamTrainer+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+RegressionOutput
55
55
Trainers.KMeansPlusPlusClustererK-means is a popular clustering algorithm. With K-means, the data is clustered into a specified number of clusters in order to minimize the within-cluster sum of squares. K-means++ improves upon K-means by using a better method for choosing the initial cluster centers.Microsoft.ML.Trainers.KMeansPlusPlusTrainerTrainKMeansMicrosoft.ML.Trainers.KMeansPlusPlusTrainer+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+ClusteringOutput
56
56
Trainers.LightGbmBinaryClassifierTrain a LightGBM binary classification model.Microsoft.ML.LightGBM.LightGbmTrainBinaryMicrosoft.ML.LightGBM.OptionsMicrosoft.ML.EntryPoints.CommonOutputs+BinaryClassificationOutput
57
-
Trainers.LightGbmClassifierTrain a LightGBM multi class model.Microsoft.ML.LightGBM.LightGbmTrainMultiClassMicrosoft.ML.LightGBM.OptionsMicrosoft.ML.EntryPoints.CommonOutputs+MulticlassClassificationOutput
57
+
Trainers.LightGbmClassifierTrain a LightGBM multi class model.Microsoft.ML.LightGBM.LightGbmTrainMulticlassMicrosoft.ML.LightGBM.OptionsMicrosoft.ML.EntryPoints.CommonOutputs+MulticlassClassificationOutput
58
58
Trainers.LightGbmRankerTrain a LightGBM ranking model.Microsoft.ML.LightGBM.LightGbmTrainRankingMicrosoft.ML.LightGBM.OptionsMicrosoft.ML.EntryPoints.CommonOutputs+RankingOutput
Trainers.LinearSvmBinaryClassifierTrain a linear SVM.Microsoft.ML.Trainers.LinearSvmTrainerTrainLinearSvmMicrosoft.ML.Trainers.LinearSvmTrainer+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+BinaryClassificationOutput
61
61
Trainers.LogisticRegressionBinaryClassifierLogistic Regression is a method in statistics used to predict the probability of occurrence of an event and can be used as a classification algorithm. The algorithm predicts the probability of occurrence of an event by fitting data to a logistical function.Microsoft.ML.Trainers.LogisticRegressionTrainBinaryMicrosoft.ML.Trainers.LogisticRegression+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+BinaryClassificationOutput
62
-
Trainers.LogisticRegressionClassifierLogistic Regression is a method in statistics used to predict the probability of occurrence of an event and can be used as a classification algorithm. The algorithm predicts the probability of occurrence of an event by fitting data to a logistical function.Microsoft.ML.Trainers.LogisticRegressionTrainMultiClassMicrosoft.ML.Trainers.MulticlassLogisticRegression+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+MulticlassClassificationOutput
63
-
Trainers.NaiveBayesClassifierTrain a MultiClassNaiveBayesTrainer.Microsoft.ML.Trainers.MultiClassNaiveBayesTrainerTrainMultiClassNaiveBayesTrainerMicrosoft.ML.Trainers.MultiClassNaiveBayesTrainer+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+MulticlassClassificationOutput
62
+
Trainers.LogisticRegressionClassifierLogistic Regression is a method in statistics used to predict the probability of occurrence of an event and can be used as a classification algorithm. The algorithm predicts the probability of occurrence of an event by fitting data to a logistical function.Microsoft.ML.Trainers.LogisticRegressionTrainMulticlassMicrosoft.ML.Trainers.MulticlassLogisticRegression+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+MulticlassClassificationOutput
63
+
Trainers.NaiveBayesClassifierTrain a MulticlassNaiveBayesTrainer.Microsoft.ML.Trainers.MulticlassNaiveBayesTrainerTrainMulticlassNaiveBayesTrainerMicrosoft.ML.Trainers.MulticlassNaiveBayesTrainer+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+MulticlassClassificationOutput
64
64
Trainers.OnlineGradientDescentRegressorTrain a Online gradient descent perceptron.Microsoft.ML.Trainers.OnlineGradientDescentTrainerTrainRegressionMicrosoft.ML.Trainers.OnlineGradientDescentTrainer+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+RegressionOutput
65
65
Trainers.OrdinaryLeastSquaresRegressorTrain an OLS regression model.Microsoft.ML.Trainers.OrdinaryLeastSquaresRegressionTrainerTrainRegressionMicrosoft.ML.Trainers.OrdinaryLeastSquaresRegressionTrainer+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+RegressionOutput
66
66
Trainers.PcaAnomalyDetectorTrain an PCA Anomaly model.Microsoft.ML.Trainers.RandomizedPrincipalComponentAnalyzerTrainPcaAnomalyMicrosoft.ML.Trainers.RandomizedPrincipalComponentAnalyzer+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+AnomalyDetectionOutput
67
67
Trainers.PoissonRegressorTrain an Poisson regression model.Microsoft.ML.Trainers.PoissonRegressionTrainRegressionMicrosoft.ML.Trainers.PoissonRegression+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+RegressionOutput
68
68
Trainers.StochasticDualCoordinateAscentBinaryClassifierTrain an SDCA binary model.Microsoft.ML.Trainers.SdcaTrainBinaryMicrosoft.ML.Trainers.LegacySdcaBinaryTrainer+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+BinaryClassificationOutput
69
-
Trainers.StochasticDualCoordinateAscentClassifierThe SDCA linear multi-class classification trainer.Microsoft.ML.Trainers.SdcaTrainMultiClassMicrosoft.ML.Trainers.SdcaMultiClassTrainer+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+MulticlassClassificationOutput
69
+
Trainers.StochasticDualCoordinateAscentClassifierThe SDCA linear multi-class classification trainer.Microsoft.ML.Trainers.SdcaTrainMulticlassMicrosoft.ML.Trainers.SdcaMulticlassTrainer+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+MulticlassClassificationOutput
70
70
Trainers.StochasticDualCoordinateAscentRegressorThe SDCA linear regression trainer.Microsoft.ML.Trainers.SdcaTrainRegressionMicrosoft.ML.Trainers.SdcaRegressionTrainer+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+RegressionOutput
71
71
Trainers.StochasticGradientDescentBinaryClassifierTrain an Hogwild SGD binary model.Microsoft.ML.Trainers.LegacySgdBinaryTrainerTrainBinaryMicrosoft.ML.Trainers.LegacySgdBinaryTrainer+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+BinaryClassificationOutput
72
72
Trainers.SymSgdBinaryClassifierTrain a symbolic SGD.Microsoft.ML.Trainers.SymbolicStochasticGradientDescentClassificationTrainerTrainSymSgdMicrosoft.ML.Trainers.SymbolicStochasticGradientDescentClassificationTrainer+OptionsMicrosoft.ML.EntryPoints.CommonOutputs+BinaryClassificationOutput
0 commit comments