Skip to content

Commit 59673b8

Browse files
author
Shahab Moradi
committed
Fixed breaking changes from master.
For sample code, changed numIterations to 10 as per Justin's request
1 parent 5219d0c commit 59673b8

File tree

2 files changed

+14
-13
lines changed

2 files changed

+14
-13
lines changed

docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/BinaryClassification/AveragedPerceptron.cs

+11-10
Original file line numberDiff line numberDiff line change
@@ -19,27 +19,28 @@ public static void Example()
1919
var data = SamplesUtils.DatasetUtils.LoadFeaturizedAdultDataset(mlContext);
2020

2121
// Leave out 10% of data for testing
22-
var (trainData, testData) = mlContext.BinaryClassification.TrainTestSplit(data, testFraction: 0.1);
22+
var trainTestData = mlContext.BinaryClassification.TrainTestSplit(data, testFraction: 0.1);
2323

2424
// Create data training pipeline
25-
var pipeline = mlContext.BinaryClassification.Trainers.AveragedPerceptron("IsOver50K", "Features");
25+
var pipeline = mlContext.BinaryClassification.Trainers.AveragedPerceptron(
26+
"IsOver50K", "Features", numIterations: 10);
2627

2728
// Fit this pipeline to the training data
28-
var model = pipeline.Fit(trainData);
29+
var model = pipeline.Fit(trainTestData.TrainSet);
2930

3031
// Evaluate how the model is doing on the test data
31-
var dataWithPredictions = model.Transform(testData);
32+
var dataWithPredictions = model.Transform(trainTestData.TestSet);
3233
var metrics = mlContext.BinaryClassification.EvaluateNonCalibrated(dataWithPredictions, "IsOver50K");
3334
SamplesUtils.ConsoleUtils.PrintMetrics(metrics);
3435

3536
// Output:
36-
// Accuracy: 0.85
37-
// AUC: 0.90
38-
// F1 Score: 0.66
39-
// Negative Precision: 0.89
37+
// Accuracy: 0.86
38+
// AUC: 0.91
39+
// F1 Score: 0.68
40+
// Negative Precision: 0.90
4041
// Negative Recall: 0.91
41-
// Positive Precision: 0.69
42-
// Positive Recall: 0.63
42+
// Positive Precision: 0.70
43+
// Positive Recall: 0.66
4344
}
4445
}
4546
}

docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/BinaryClassification/AveragedPerceptronWithOptions.cs

+3-3
Original file line numberDiff line numberDiff line change
@@ -20,7 +20,7 @@ public static void Example()
2020
var data = SamplesUtils.DatasetUtils.LoadFeaturizedAdultDataset(mlContext);
2121

2222
// Leave out 10% of data for testing
23-
var (trainData, testData) = mlContext.BinaryClassification.TrainTestSplit(data, testFraction: 0.1);
23+
var trainTestData = mlContext.BinaryClassification.TrainTestSplit(data, testFraction: 0.1);
2424

2525
// Define the trainer options
2626
var options = new AveragedPerceptronTrainer.Options()
@@ -38,10 +38,10 @@ public static void Example()
3838
var pipeline = mlContext.BinaryClassification.Trainers.AveragedPerceptron(options);
3939

4040
// Fit this pipeline to the training data
41-
var model = pipeline.Fit(trainData);
41+
var model = pipeline.Fit(trainTestData.TrainSet);
4242

4343
// Evaluate how the model is doing on the test data
44-
var dataWithPredictions = model.Transform(testData);
44+
var dataWithPredictions = model.Transform(trainTestData.TestSet);
4545
var metrics = mlContext.BinaryClassification.EvaluateNonCalibrated(dataWithPredictions, "IsOver50K");
4646
SamplesUtils.ConsoleUtils.PrintMetrics(metrics);
4747

0 commit comments

Comments
 (0)