Skip to content

Commit 6296431

Browse files
committed
PR feedback.
1 parent fd5034c commit 6296431

File tree

13 files changed

+12
-16
lines changed

13 files changed

+12
-16
lines changed

docs/samples/Microsoft.ML.Samples/Dynamic/PermutationFeatureImportance/PFIHelper.cs

-1
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,6 @@
33
using Microsoft.Data.DataView;
44
using Microsoft.ML.Trainers;
55
using Microsoft.ML.SamplesUtils;
6-
using Microsoft.ML.Trainers.Mkl;
76

87
namespace Microsoft.ML.Samples.Dynamic.PermutationFeatureImportance
98
{

docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/Regression/OrdinaryLeastSquaresWithOptions.cs

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
using System;
22
using Microsoft.ML.Data;
33
using Microsoft.ML.SamplesUtils;
4-
using Microsoft.ML.Trainers.Mkl;
4+
using Microsoft.ML.Trainers;
55

66
namespace Microsoft.ML.Samples.Dynamic.Trainers.Regression
77
{

src/Microsoft.ML.Mkl.Components/ComputeLRTrainingStdThroughHal.cs

+1-1
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@
55
using System;
66
using Microsoft.ML.Data;
77
using Microsoft.ML.Internal.Utilities;
8-
using Microsoft.ML.Trainers.Mkl;
8+
using Microsoft.ML.Trainers;
99

1010
namespace Microsoft.ML.Trainers
1111
{

src/Microsoft.ML.Mkl.Components/MklComponentsCatalog.cs

+1-1
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@
33
// See the LICENSE file in the project root for more information.
44

55
using Microsoft.ML.Data;
6-
using Microsoft.ML.Trainers.Mkl;
6+
using Microsoft.ML.Trainers;
77
using Microsoft.ML.Transforms;
88

99
namespace Microsoft.ML

src/Microsoft.ML.Mkl.Components/OlsLinearRegression.cs

+2-2
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@
1515
using Microsoft.ML.Internal.Internallearn;
1616
using Microsoft.ML.Internal.Utilities;
1717
using Microsoft.ML.Model;
18-
using Microsoft.ML.Trainers.Mkl;
18+
using Microsoft.ML.Trainers;
1919

2020
[assembly: LoadableClass(OrdinaryLeastSquaresRegressionTrainer.Summary, typeof(OrdinaryLeastSquaresRegressionTrainer), typeof(OrdinaryLeastSquaresRegressionTrainer.Options),
2121
new[] { typeof(SignatureRegressorTrainer), typeof(SignatureTrainer), typeof(SignatureFeatureScorerTrainer) },
@@ -29,7 +29,7 @@
2929

3030
[assembly: LoadableClass(typeof(void), typeof(OrdinaryLeastSquaresRegressionTrainer), null, typeof(SignatureEntryPointModule), OrdinaryLeastSquaresRegressionTrainer.LoadNameValue)]
3131

32-
namespace Microsoft.ML.Trainers.Mkl
32+
namespace Microsoft.ML.Trainers
3333
{
3434
/// <include file='doc.xml' path='doc/members/member[@name="OLS"]/*' />
3535
public sealed class OrdinaryLeastSquaresRegressionTrainer : TrainerEstimatorBase<RegressionPredictionTransformer<OlsLinearRegressionModelParameters>, OlsLinearRegressionModelParameters>

src/Microsoft.ML.Mkl.Components/SymSgdClassificationTrainer.cs

+2-2
Original file line numberDiff line numberDiff line change
@@ -16,7 +16,7 @@
1616
using Microsoft.ML.Internal.Internallearn;
1717
using Microsoft.ML.Internal.Utilities;
1818
using Microsoft.ML.Model;
19-
using Microsoft.ML.Trainers.Mkl;
19+
using Microsoft.ML.Trainers;
2020
using Microsoft.ML.Transforms;
2121

2222
[assembly: LoadableClass(typeof(SymbolicStochasticGradientDescentClassificationTrainer), typeof(SymbolicStochasticGradientDescentClassificationTrainer.Options),
@@ -27,7 +27,7 @@
2727

2828
[assembly: LoadableClass(typeof(void), typeof(SymbolicStochasticGradientDescentClassificationTrainer), null, typeof(SignatureEntryPointModule), SymbolicStochasticGradientDescentClassificationTrainer.LoadNameValue)]
2929

30-
namespace Microsoft.ML.Trainers.Mkl
30+
namespace Microsoft.ML.Trainers
3131
{
3232
using TPredictor = CalibratedModelParametersBase<LinearBinaryModelParameters, PlattCalibrator>;
3333

test/BaselineOutput/Common/EntryPoints/core_ep-list.tsv

+2-2
Original file line numberDiff line numberDiff line change
@@ -62,14 +62,14 @@ Trainers.LogisticRegressionBinaryClassifier Logistic Regression is a method in s
6262
Trainers.LogisticRegressionClassifier Logistic Regression is a method in statistics used to predict the probability of occurrence of an event and can be used as a classification algorithm. The algorithm predicts the probability of occurrence of an event by fitting data to a logistical function. Microsoft.ML.Trainers.LogisticRegression TrainMultiClass Microsoft.ML.Trainers.MulticlassLogisticRegression+Options Microsoft.ML.EntryPoints.CommonOutputs+MulticlassClassificationOutput
6363
Trainers.NaiveBayesClassifier Train a MultiClassNaiveBayesTrainer. Microsoft.ML.Trainers.MultiClassNaiveBayesTrainer TrainMultiClassNaiveBayesTrainer Microsoft.ML.Trainers.MultiClassNaiveBayesTrainer+Options Microsoft.ML.EntryPoints.CommonOutputs+MulticlassClassificationOutput
6464
Trainers.OnlineGradientDescentRegressor Train a Online gradient descent perceptron. Microsoft.ML.Trainers.OnlineGradientDescentTrainer TrainRegression Microsoft.ML.Trainers.OnlineGradientDescentTrainer+Options Microsoft.ML.EntryPoints.CommonOutputs+RegressionOutput
65-
Trainers.OrdinaryLeastSquaresRegressor Train an OLS regression model. Microsoft.ML.Trainers.Mkl.OlsLinearRegressionTrainer TrainRegression Microsoft.ML.Trainers.Mkl.OlsLinearRegressionTrainer+Options Microsoft.ML.EntryPoints.CommonOutputs+RegressionOutput
65+
Trainers.OrdinaryLeastSquaresRegressor Train an OLS regression model. Microsoft.ML.Trainers.OlsLinearRegressionTrainer TrainRegression Microsoft.ML.Trainers.OlsLinearRegressionTrainer+Options Microsoft.ML.EntryPoints.CommonOutputs+RegressionOutput
6666
Trainers.PcaAnomalyDetector Train an PCA Anomaly model. Microsoft.ML.Trainers.RandomizedPcaTrainer TrainPcaAnomaly Microsoft.ML.Trainers.RandomizedPcaTrainer+Options Microsoft.ML.EntryPoints.CommonOutputs+AnomalyDetectionOutput
6767
Trainers.PoissonRegressor Train an Poisson regression model. Microsoft.ML.Trainers.PoissonRegression TrainRegression Microsoft.ML.Trainers.PoissonRegression+Options Microsoft.ML.EntryPoints.CommonOutputs+RegressionOutput
6868
Trainers.StochasticDualCoordinateAscentBinaryClassifier Train an SDCA binary model. Microsoft.ML.Trainers.Sdca TrainBinary Microsoft.ML.Trainers.LegacySdcaBinaryTrainer+Options Microsoft.ML.EntryPoints.CommonOutputs+BinaryClassificationOutput
6969
Trainers.StochasticDualCoordinateAscentClassifier The SDCA linear multi-class classification trainer. Microsoft.ML.Trainers.Sdca TrainMultiClass Microsoft.ML.Trainers.SdcaMultiClassTrainer+Options Microsoft.ML.EntryPoints.CommonOutputs+MulticlassClassificationOutput
7070
Trainers.StochasticDualCoordinateAscentRegressor The SDCA linear regression trainer. Microsoft.ML.Trainers.Sdca TrainRegression Microsoft.ML.Trainers.SdcaRegressionTrainer+Options Microsoft.ML.EntryPoints.CommonOutputs+RegressionOutput
7171
Trainers.StochasticGradientDescentBinaryClassifier Train an Hogwild SGD binary model. Microsoft.ML.Trainers.LegacySgdBinaryTrainer TrainBinary Microsoft.ML.Trainers.LegacySgdBinaryTrainer+Options Microsoft.ML.EntryPoints.CommonOutputs+BinaryClassificationOutput
72-
Trainers.SymSgdBinaryClassifier Train a symbolic SGD. Microsoft.ML.Trainers.Mkl.SymSgdClassificationTrainer TrainSymSgd Microsoft.ML.Trainers.Mkl.SymSgdClassificationTrainer+Options Microsoft.ML.EntryPoints.CommonOutputs+BinaryClassificationOutput
72+
Trainers.SymSgdBinaryClassifier Train a symbolic SGD. Microsoft.ML.Trainers.SymSgdClassificationTrainer TrainSymSgd Microsoft.ML.Trainers.SymSgdClassificationTrainer+Options Microsoft.ML.EntryPoints.CommonOutputs+BinaryClassificationOutput
7373
Transforms.ApproximateBootstrapSampler Approximate bootstrap sampling. Microsoft.ML.Transforms.BootstrapSample GetSample Microsoft.ML.Transforms.BootstrapSamplingTransformer+Options Microsoft.ML.EntryPoints.CommonOutputs+TransformOutput
7474
Transforms.BinaryPredictionScoreColumnsRenamer For binary prediction, it renames the PredictedLabel and Score columns to include the name of the positive class. Microsoft.ML.EntryPoints.ScoreModel RenameBinaryPredictionScoreColumns Microsoft.ML.EntryPoints.ScoreModel+RenameBinaryPredictionScoreColumnsInput Microsoft.ML.EntryPoints.CommonOutputs+TransformOutput
7575
Transforms.BinNormalizer The values are assigned into equidensity bins and a value is mapped to its bin_number/number_of_bins. Microsoft.ML.Data.Normalize Bin Microsoft.ML.Transforms.NormalizeTransform+BinArguments Microsoft.ML.EntryPoints.CommonOutputs+TransformOutput

test/Microsoft.ML.Core.Tests/UnitTests/TestEntryPoints.cs

-1
Original file line numberDiff line numberDiff line change
@@ -22,7 +22,6 @@
2222
using Microsoft.ML.Trainers;
2323
using Microsoft.ML.Trainers.Ensemble;
2424
using Microsoft.ML.Trainers.FastTree;
25-
using Microsoft.ML.Trainers.Mkl;
2625
using Microsoft.ML.Transforms;
2726
using Microsoft.ML.Transforms.Text;
2827
using Microsoft.ML.Transforms.TimeSeries;

test/Microsoft.ML.Functional.Tests/Validation.cs

+1-1
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@
77
using Microsoft.ML.RunTests;
88
using Microsoft.ML.TestFramework;
99
using Microsoft.ML.Trainers.FastTree;
10-
using Microsoft.ML.Trainers.Mkl;
10+
using Microsoft.ML.Trainers;
1111
using Xunit;
1212

1313
namespace Microsoft.ML.Functional.Tests

test/Microsoft.ML.Predictor.Tests/TestPredictors.cs

-1
Original file line numberDiff line numberDiff line change
@@ -20,7 +20,6 @@ namespace Microsoft.ML.RunTests
2020
using Microsoft.ML.TestFramework;
2121
using Microsoft.ML.Trainers;
2222
using Microsoft.ML.Trainers.FastTree;
23-
using Microsoft.ML.Trainers.Mkl;
2423
using Xunit;
2524
using Xunit.Abstractions;
2625
using TestLearners = TestLearnersBase;

test/Microsoft.ML.Tests/Scenarios/Api/Estimators/SimpleTrainAndPredict.cs

-1
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,6 @@
66
using Microsoft.ML.Data;
77
using Microsoft.ML.RunTests;
88
using Microsoft.ML.Trainers;
9-
using Microsoft.ML.Trainers.Mkl;
109
using Xunit;
1110

1211
namespace Microsoft.ML.Tests.Scenarios.Api

test/Microsoft.ML.Tests/TrainerEstimators/OlsLinearRegressionTests.cs

+1-1
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@
33
// See the LICENSE file in the project root for more information.
44

55
using System.Collections.Generic;
6-
using Microsoft.ML.Trainers.Mkl;
6+
using Microsoft.ML.Trainers;
77
using Xunit;
88

99
namespace Microsoft.ML.Tests.TrainerEstimators

test/Microsoft.ML.Tests/TrainerEstimators/SymSgdClassificationTests.cs

+1-1
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@
44

55
using System.Linq;
66
using Microsoft.ML.Data;
7-
using Microsoft.ML.Trainers.Mkl;
7+
using Microsoft.ML.Trainers;
88
using Xunit;
99

1010
namespace Microsoft.ML.Tests.TrainerEstimators

0 commit comments

Comments
 (0)