You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
/// To create this trainer, use [Sdca](xref:Microsoft.ML.StandardTrainersCatalog.Sdca(Microsoft.ML.RegressionCatalog.RegressionTrainers,System.String,System.String,System.String,Microsoft.ML.Trainers.ISupportSdcaRegressionLoss,System.Nullable{System.Single},System.Nullable{System.Single},System.Nullable{System.Int32}))
30
+
/// or [Sdca(Options)](xref:Microsoft.ML.StandardTrainersCatalog.Sdca(Microsoft.ML.RegressionCatalog.RegressionTrainers,Microsoft.ML.Trainers.SdcaRegressionTrainer.Options)).
/// <param name="labelColumnName">The name of the label column.</param>
136
-
/// <param name="featureColumnName">The name of the feature column.</param>
135
+
/// <param name="labelColumnName">The name of the label column. The column data must be <see cref="System.Single"/></param>
136
+
/// <param name="featureColumnName">The name of the feature column. The column data must be a known-sized vector of <see cref="System.Single"/></param>
137
137
/// <param name="exampleWeightColumnName">The name of the example weight column (optional).</param>
138
138
/// <param name="lossFunction">The <a href="https://en.wikipedia.org/wiki/Loss_function">loss</a> function minimized in the training process. Using, for example, its default <see cref="SquaredLoss"/> leads to a least square trainer.</param>
139
139
/// <param name="l2Regularization">The L2 weight for <a href='https://en.wikipedia.org/wiki/Regularization_(mathematics)'>regularization</a>.</param>
@@ -160,7 +160,7 @@ public static SdcaRegressionTrainer Sdca(this RegressionCatalog.RegressionTraine
160
160
}
161
161
162
162
/// <summary>
163
-
/// Predict a target using a linear regression model trained with <see cref="SdcaRegressionTrainer"/> and advanced options.
163
+
/// Create <see cref="SdcaRegressionTrainer"/> with advanced options, which predicts a target using a linear regression model.
/// <param name="labelColumnName">The name of the label column.</param>
188
-
/// <param name="featureColumnName">The name of the feature column.</param>
187
+
/// <param name="labelColumnName">The name of the label column. The column data must be <see cref="System.Single"/>.</param>
188
+
/// <param name="featureColumnName">The name of the feature column. The column data must be a known-sized vector of <see cref="System.Single"/>.</param>
189
189
/// <param name="exampleWeightColumnName">The name of the example weight column (optional).</param>
190
190
/// <param name="l2Regularization">The L2 weight for <a href='https://en.wikipedia.org/wiki/Regularization_(mathematics)'>regularization</a>.</param>
191
191
/// <param name="l1Regularization">The L1 <a href='https://en.wikipedia.org/wiki/Regularization_(mathematics)'>regularization</a> hyperparameter. Higher values will tend to lead to more sparse model.</param>
@@ -211,7 +211,7 @@ public static SdcaLogisticRegressionBinaryTrainer SdcaLogisticRegression(
211
211
}
212
212
213
213
/// <summary>
214
-
/// Predict a target using a linear classification model trained with <see cref="SdcaLogisticRegressionBinaryTrainer"/> and advanced options.
214
+
/// Create <see cref="SdcaLogisticRegressionBinaryTrainer"/> using advanced options, which predicts a target using a linear classification model.
0 commit comments