You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
/// The <see cref="IEstimator{TTransformer}"/> for training a Poisson regression model.
29
29
/// </summary>
30
30
/// <remarks>
31
-
/// <a href='https://en.wikipedia.org/wiki/Poisson_regression'>Poisson regression</a> is a parameterized regression method.
31
+
/// <format type="text/markdown"><)
33
+
/// or [LbfgsPoissonRegression(Options)](xref:Microsoft.ML.StandardTrainersCatalog.LbfgsPoissonRegression(Microsoft.ML.RegressionCatalog.RegressionTrainers,Microsoft.ML.Trainers.LbfgsPoissonRegressionTrainer.Options)).
/// | Required NuGet in addition to Microsoft.ML | None |
44
+
///
45
+
/// ### Training Algorithm Details
46
+
/// [Poisson regression](https://en.wikipedia.org/wiki/Poisson_regression) is a parameterized regression method.
32
47
/// It assumes that the log of the conditional mean of the dependent variable follows a linear function of the dependent variables.
33
48
/// Assuming that the dependent variable follows a Poisson distribution, the regression parameters can be estimated by maximizing the likelihood of the obtained observations.
/// <param name="labelColumnName">The name of the label column.</param>
580
-
/// <param name="featureColumnName">The name of the feature column.</param>
579
+
/// <param name="labelColumnName">The name of the label column. The column data must be <see cref="System.Single"/></param>
580
+
/// <param name="featureColumnName">The name of the feature column. The column data must be a known-sized vector of <see cref="System.Single"/></param>
581
581
/// <param name="exampleWeightColumnName">The name of the example weight column (optional).</param>
582
582
/// <param name="l1Regularization">The L1 <a href='https://en.wikipedia.org/wiki/Regularization_(mathematics)'>regularization</a> hyperparameter. Higher values will tend to lead to more sparse model.</param>
583
583
/// <param name="l2Regularization">The L2 weight for <a href='https://en.wikipedia.org/wiki/Regularization_(mathematics)'>regularization</a>.</param>
@@ -606,7 +606,7 @@ public static LbfgsPoissonRegressionTrainer LbfgsPoissonRegression(this Regressi
606
606
}
607
607
608
608
/// <summary>
609
-
/// Predict a target using a linear regression model trained with the <see cref="Microsoft.ML.Trainers.LbfgsPoissonRegressionTrainer"/> and advanced options.
609
+
/// Creates a <see cref="Microsoft.ML.Trainers.LbfgsPoissonRegressionTrainer"/>, which predicts a target using a linear regression model with advanced options.
0 commit comments