Skip to content

Commit 97772b1

Browse files
committed
XML documentation for FastTree Tweedie trainer.
1 parent fa95c00 commit 97772b1

File tree

3 files changed

+28
-7
lines changed

3 files changed

+28
-7
lines changed

src/Microsoft.ML.FastTree/FastTreeArguments.cs

+2-1
Original file line numberDiff line numberDiff line change
@@ -153,7 +153,8 @@ public Options()
153153
public sealed partial class FastTreeTweedieTrainer
154154
{
155155
/// <summary>
156-
/// Options for the <see cref="FastTreeTweedieTrainer"/>.
156+
/// Options for the <see cref="FastTreeTweedieTrainer"/> as used in
157+
/// [FastTreeTweedie(Options)](xref:Microsoft.ML.TreeExtensions.FastTreeTweedie(Microsoft.ML.RegressionCatalog.RegressionTrainers,Microsoft.ML.Trainers.FastTree.FastTreeTweedieTrainer.Options)).
157158
/// </summary>
158159
[TlcModule.Component(Name = LoadNameValue, FriendlyName = UserNameValue, Desc = Summary)]
159160
public sealed class Options : BoostedTreeOptions, IFastTreeTrainerFactory

src/Microsoft.ML.FastTree/FastTreeTweedie.cs

+22-2
Original file line numberDiff line numberDiff line change
@@ -30,12 +30,32 @@ namespace Microsoft.ML.Trainers.FastTree
3030
/// This trainer is a generalization of Poisson, compound Poisson, and gamma regression.
3131
/// </summary>
3232
/// <remarks>
33+
/// <format type="text/markdown"><![CDATA[
34+
/// To create this trainer, use [FastTreeTweedie](xref:Microsoft.ML.TreeExtensions.FastTreeTweedie(Microsoft.ML.RegressionCatalog.RegressionTrainers,System.String,System.String,System.String,System.Int32,System.Int32,System.Int32,System.Double))
35+
/// or [FastTreeTweedie(Options)](xref:Microsoft.ML.TreeExtensions.FastTreeTweedie(Microsoft.ML.RegressionCatalog.RegressionTrainers,Microsoft.ML.Trainers.FastTree.FastTreeTweedieTrainer.Options)).
36+
///
37+
/// [!include[io](~/../docs/samples/docs/api-reference/io-columns-regression.md)]
38+
///
39+
/// ### Trainer Characteristics
40+
/// | | |
41+
/// | -- | -- |
42+
/// | Machine learning task | Regression |
43+
/// | Is normalization required? | Yes |
44+
/// | Is caching required? | No |
45+
/// | Required NuGet in addition to Microsoft.ML | Microsoft.ML.FastTree |
46+
///
47+
/// ### Training Algorithm Details
3348
/// The Tweedie boosting model follows the mathematics established in <a href="https://arxiv.org/pdf/1508.06378.pdf">
3449
/// Insurance Premium Prediction via Gradient Tree-Boosted Tweedie Compound Poisson Models</a> from Yang, Quan, and Zou.
3550
/// For an introduction to Gradient Boosting, and more information, see:
36-
/// <a href='https://en.wikipedia.org/wiki/Gradient_boosting#Gradient_tree_boosting'> Wikipedia: Gradient boosting(Gradient tree boosting)</a> or
37-
/// <a href='https://projecteuclid.org/DPubS?service=UI&amp;version=1.0&amp;verb=Display&amp;handle=euclid.aos/1013203451'> Greedy function approximation: A gradient boosting machine</a>.
51+
/// [Wikipedia: Gradient boosting(Gradient tree boosting)](https://en.wikipedia.org/wiki/Gradient_boosting#Gradient_tree_boosting) or
52+
/// [Greedy function approximation: A gradient boosting machine](https://projecteuclid.org/DPubS?service=UI&amp;version=1.0&amp;verb=Display&amp;handle=euclid.aos/1013203451).
53+
/// ]]>
54+
/// </format>
3855
/// </remarks>
56+
/// <seealso cref="Microsoft.ML.TreeExtensions.FastTreeTweedie(Microsoft.ML.RegressionCatalog.RegressionTrainers,System.String,System.String,System.String,System.Int32,System.Int32,System.Int32,System.Double)"/>
57+
/// <seealso cref="Microsoft.ML.TreeExtensions.FastTreeTweedie(Microsoft.ML.RegressionCatalog.RegressionTrainers,Microsoft.ML.Trainers.FastTree.FastTreeTweedieTrainer.Options)"/>
58+
/// <seealso cref="Options"/>
3959
public sealed partial class FastTreeTweedieTrainer
4060
: BoostingFastTreeTrainerBase<FastTreeTweedieTrainer.Options, RegressionPredictionTransformer<FastTreeTweedieModelParameters>, FastTreeTweedieModelParameters>
4161
{

src/Microsoft.ML.FastTree/TreeTrainersCatalog.cs

+4-4
Original file line numberDiff line numberDiff line change
@@ -278,11 +278,11 @@ public static GamRegressionTrainer Gam(this RegressionCatalog.RegressionTrainers
278278
}
279279

280280
/// <summary>
281-
/// Predict a target using a decision tree regression model trained with the <see cref="FastTreeTweedieTrainer"/>.
281+
/// Creates <see cref="FastTreeTweedieTrainer"/>, which predicts a target using a decision tree regression model.
282282
/// </summary>
283283
/// <param name="catalog">The <see cref="RegressionCatalog"/>.</param>
284-
/// <param name="labelColumnName">The name of the label column.</param>
285-
/// <param name="featureColumnName">The name of the feature column.</param>
284+
/// <param name="labelColumnName">The name of the label column. The column data must be <see cref="System.Single"/>.</param>
285+
/// <param name="featureColumnName">The name of the feature column. The column data must be a known-sized vector of <see cref="System.Single"/>.</param>
286286
/// <param name="exampleWeightColumnName">The name of the example weight column (optional).</param>
287287
/// <param name="numberOfTrees">Total number of decision trees to create in the ensemble.</param>
288288
/// <param name="numberOfLeaves">The maximum number of leaves per decision tree.</param>
@@ -310,7 +310,7 @@ public static FastTreeTweedieTrainer FastTreeTweedie(this RegressionCatalog.Regr
310310
}
311311

312312
/// <summary>
313-
/// Predict a target using a decision tree regression model trained with the <see cref="FastTreeTweedieTrainer"/> and advanced options.
313+
/// Creates <see cref="FastTreeTweedieTrainer"/>, which predicts a target using a decision tree regression model with advanced options.
314314
/// </summary>
315315
/// <param name="catalog">The <see cref="RegressionCatalog"/>.</param>
316316
/// <param name="options">Trainer options.</param>

0 commit comments

Comments
 (0)