You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
/// The trained model is <a href='https://en.wikipedia.org/wiki/Calibration_(statistics)'>calibrated</a> and can produce probability by feeding the output value of the
1551
1551
/// linear function to a <see cref="PlattCalibrator"/>.
/// To create this trainer, use [SdcaLogisticRegression](xref:Microsoft.ML.StandardTrainersCatalog.SdcaLogisticRegression(Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers,System.String,System.String,System.String,System.Nullable{System.Single},System.Nullable{System.Single},System.Nullable{System.Int32}))
1556
+
/// or [SdcaLogisticRegression(Options)](xref:Microsoft.ML.StandardTrainersCatalog.SdcaLogisticRegression(Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers,Microsoft.ML.Trainers.SdcaLogisticRegressionBinaryTrainer.Options)).
/// | Required NuGet in addition to Microsoft.ML | None |
1567
+
///
1568
+
/// ### Training Algorithm Details
1569
+
/// This trainer is based on the Stochastic Dual Coordinate Ascent (SDCA) method, a state-of-the-art optimization technique for convex objective functions.
1570
+
/// The algorithm can be scaled for use on large out-of-memory data sets due to a semi-asynchronized implementation that supports multi-threading.
1571
+
/// Convergence is underwritten by periodically enforcing synchronization between primal and dual updates in a separate thread.
1572
+
/// Several choices of loss functions are also provided.The SDCA method combines several of the best properties and capabilities of logistic regression and SVM algorithms.
1573
+
/// Note that SDCA is a stochastic and streaming optimization algorithm. The results depends on the order of the training data.
1574
+
/// For reproducible results, it is recommended that one sets 'Shuffle' to False and 'NumThreads' to 1.
1575
+
/// Elastic net regularization can be specified by the 'L2Const' and 'L1Threshold' parameters. Note that the 'L2Const' has an effect on the rate of convergence.
1576
+
/// In general, the larger the 'L2Const', the faster SDCA converges.
1577
+
/// For more information, see: [Scaling Up Stochastic Dual Coordinate Ascent](https://www.microsoft.com/en-us/research/wp-content/uploads/2016/06/main-3.pdf ) and
1578
+
/// [Stochastic Dual Coordinate Ascent Methods for Regularized Loss Minimization](http://www.jmlr.org/papers/volume14/shalev-shwartz13a/shalev-shwartz13a.pdf).
/// The <see cref="IEstimator{TTransformer}"/> for training a binary logistic regression classification model using the stochastic dual coordinate ascent method.
/// To create this trainer, use [SdcaNonCalibrated](xref:Microsoft.ML.StandardTrainersCatalog.SdcaNonCalibrated(Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers,System.String,System.String,System.String,Microsoft.ML.Trainers.ISupportSdcaClassificationLoss,System.Nullable{System.Single},System.Nullable{System.Single},System.Nullable{System.Int32}))
1651
+
/// or [SdcaNonCalibrated(Options)](xref:Microsoft.ML.StandardTrainersCatalog.SdcaNonCalibrated(Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers,Microsoft.ML.Trainers.SdcaNonCalibratedBinaryTrainer.Options)).
/// | Required NuGet in addition to Microsoft.ML | None |
1662
+
///
1663
+
/// ### Training Algorithm Details
1664
+
/// This trainer is based on the Stochastic Dual Coordinate Ascent (SDCA) method, a state-of-the-art optimization technique for convex objective functions.
1665
+
/// The algorithm can be scaled for use on large out-of-memory data sets due to a semi-asynchronized implementation that supports multi-threading.
1666
+
/// Convergence is underwritten by periodically enforcing synchronization between primal and dual updates in a separate thread.
1667
+
/// Several choices of loss functions are also provided.The SDCA method combines several of the best properties and capabilities of logistic regression and SVM algorithms.
1668
+
/// Note that SDCA is a stochastic and streaming optimization algorithm. The results depends on the order of the training data.
1669
+
/// For reproducible results, it is recommended that one sets 'Shuffle' to False and 'NumThreads' to 1.
1670
+
/// Elastic net regularization can be specified by the 'L2Const' and 'L1Threshold' parameters. Note that the 'L2Const' has an effect on the rate of convergence.
1671
+
/// In general, the larger the 'L2Const', the faster SDCA converges.
1672
+
/// For more information, see: [Scaling Up Stochastic Dual Coordinate Ascent](https://www.microsoft.com/en-us/research/wp-content/uploads/2016/06/main-3.pdf ) and
1673
+
/// [Stochastic Dual Coordinate Ascent Methods for Regularized Loss Minimization](http://www.jmlr.org/papers/volume14/shalev-shwartz13a/shalev-shwartz13a.pdf).
Copy file name to clipboardExpand all lines: src/Microsoft.ML.StandardTrainers/StandardTrainersCatalog.cs
+8-8
Original file line number
Diff line number
Diff line change
@@ -181,11 +181,11 @@ public static SdcaRegressionTrainer Sdca(this RegressionCatalog.RegressionTraine
181
181
}
182
182
183
183
/// <summary>
184
-
/// Predict a target using a linear classification model trained with <see cref="SdcaLogisticRegressionBinaryTrainer"/>.
184
+
/// Creates a <see cref="SdcaLogisticRegressionBinaryTrainer"/> that predicts a target using a linear classification model trained over a boolean label data.
/// <param name="labelColumnName">The name of the label column.</param>
188
-
/// <param name="featureColumnName">The name of the feature column.</param>
187
+
/// <param name="labelColumnName">The name of the label column. The column data must be <see cref="System.Boolean"/></param>
188
+
/// <param name="featureColumnName">The name of the feature column. The column data must be a known-sized vector of <see cref="System.Single"/>.</param>
189
189
/// <param name="exampleWeightColumnName">The name of the example weight column (optional).</param>
190
190
/// <param name="l2Regularization">The L2 weight for <a href='https://en.wikipedia.org/wiki/Regularization_(mathematics)'>regularization</a>.</param>
191
191
/// <param name="l1Regularization">The L1 <a href='https://en.wikipedia.org/wiki/Regularization_(mathematics)'>regularization</a> hyperparameter. Higher values will tend to lead to more sparse model.</param>
@@ -211,7 +211,7 @@ public static SdcaLogisticRegressionBinaryTrainer SdcaLogisticRegression(
211
211
}
212
212
213
213
/// <summary>
214
-
/// Predict a target using a linear classification model trained with <see cref="SdcaLogisticRegressionBinaryTrainer"/> and advanced options.
214
+
/// Creates a <see cref="SdcaLogisticRegressionBinaryTrainer"/> that predicts a target using a linear classification model trained over boolean label data with advanced options.
/// <param name="labelColumnName">The name of the label column.</param>
240
-
/// <param name="featureColumnName">The name of the feature column.</param>
239
+
/// <param name="labelColumnName">The name of the label column. The column data must be <see cref="System.Boolean"/>.</param>
240
+
/// <param name="featureColumnName">The name of the feature column. The column data must be a known-sized vector of <see cref="System.Single"/>.</param>
241
241
/// <param name="exampleWeightColumnName">The name of the example weight column (optional).</param>
242
242
/// <param name="lossFunction">The <a href="https://en.wikipedia.org/wiki/Loss_function">loss</a> function minimized in the training process. Defaults to <see cref="LogLoss"/> if not specified.</param>
243
243
/// <param name="l2Regularization">The L2 weight for <a href='https://en.wikipedia.org/wiki/Regularization_(mathematics)'>regularization</a>.</param>
@@ -265,7 +265,7 @@ public static SdcaNonCalibratedBinaryTrainer SdcaNonCalibrated(
265
265
}
266
266
267
267
/// <summary>
268
-
/// Predict a target using a linear classification model trained with <see cref="SdcaNonCalibratedBinaryTrainer"/> and advanced options.
268
+
/// Creates a <see cref="SdcaNonCalibratedBinaryTrainer"/> that predicts a target using a linear classification model trained over boolean label data with advanced options.
0 commit comments