@@ -31,7 +31,8 @@ public void CompareTrainerEvaluations()
31
31
32
32
// Get the dataset.
33
33
var data = mlContext . Data . LoadFromTextFile < TweetSentiment > ( GetDataPath ( TestDatasets . Sentiment . trainFilename ) ,
34
- separatorChar : TestDatasets . Sentiment . fileSeparator , hasHeader : TestDatasets . Sentiment . fileHasHeader ,
34
+ separatorChar : TestDatasets . Sentiment . fileSeparator ,
35
+ hasHeader : TestDatasets . Sentiment . fileHasHeader ,
35
36
allowQuoting : TestDatasets . Sentiment . allowQuoting ) ;
36
37
var trainTestSplit = mlContext . BinaryClassification . TrainTestSplit ( data ) ;
37
38
var trainData = trainTestSplit . TrainSet ;
@@ -85,7 +86,8 @@ public void ContinueTrainingAveragePerceptron()
85
86
86
87
// Get the dataset.
87
88
var data = mlContext . Data . LoadFromTextFile < TweetSentiment > ( GetDataPath ( TestDatasets . Sentiment . trainFilename ) ,
88
- separatorChar : TestDatasets . Sentiment . fileSeparator , hasHeader : TestDatasets . Sentiment . fileHasHeader ,
89
+ separatorChar : TestDatasets . Sentiment . fileSeparator ,
90
+ hasHeader : TestDatasets . Sentiment . fileHasHeader ,
89
91
allowQuoting : TestDatasets . Sentiment . allowQuoting ) ;
90
92
91
93
// Create a transformation pipeline.
@@ -128,7 +130,8 @@ public void ContinueTrainingFieldAwareFactorizationMachines()
128
130
129
131
// Get the dataset.
130
132
var data = mlContext . Data . LoadFromTextFile < TweetSentiment > ( GetDataPath ( TestDatasets . Sentiment . trainFilename ) ,
131
- separatorChar : TestDatasets . Sentiment . fileSeparator , hasHeader : TestDatasets . Sentiment . fileHasHeader ,
133
+ separatorChar : TestDatasets . Sentiment . fileSeparator ,
134
+ hasHeader : TestDatasets . Sentiment . fileHasHeader ,
132
135
allowQuoting : TestDatasets . Sentiment . allowQuoting ) ;
133
136
134
137
// Create a transformation pipeline.
@@ -171,7 +174,8 @@ public void ContinueTrainingLinearSupportVectorMachine()
171
174
172
175
// Get the dataset.
173
176
var data = mlContext . Data . LoadFromTextFile < TweetSentiment > ( GetDataPath ( TestDatasets . Sentiment . trainFilename ) ,
174
- separatorChar : TestDatasets . Sentiment . fileSeparator , hasHeader : TestDatasets . Sentiment . fileHasHeader ,
177
+ separatorChar : TestDatasets . Sentiment . fileSeparator ,
178
+ hasHeader : TestDatasets . Sentiment . fileHasHeader ,
175
179
allowQuoting : TestDatasets . Sentiment . allowQuoting ) ;
176
180
177
181
// Create a transformation pipeline.
@@ -214,7 +218,8 @@ public void ContinueTrainingLogisticRegression()
214
218
215
219
// Get the dataset.
216
220
var data = mlContext . Data . LoadFromTextFile < TweetSentiment > ( GetDataPath ( TestDatasets . Sentiment . trainFilename ) ,
217
- separatorChar : TestDatasets . Sentiment . fileSeparator , hasHeader : TestDatasets . Sentiment . fileHasHeader ,
221
+ separatorChar : TestDatasets . Sentiment . fileSeparator ,
222
+ hasHeader : TestDatasets . Sentiment . fileHasHeader ,
218
223
allowQuoting : TestDatasets . Sentiment . allowQuoting ) ;
219
224
220
225
// Create a transformation pipeline.
@@ -256,8 +261,8 @@ public void ContinueTrainingLogisticRegressionMulticlass()
256
261
var mlContext = new MLContext ( seed : 1 ) ;
257
262
258
263
var data = mlContext . Data . LoadFromTextFile < Iris > ( GetDataPath ( TestDatasets . iris . trainFilename ) ,
259
- hasHeader : TestDatasets . iris . fileHasHeader ,
260
- separatorChar : TestDatasets . iris . fileSeparator ) ;
264
+ hasHeader : TestDatasets . iris . fileHasHeader ,
265
+ separatorChar : TestDatasets . iris . fileSeparator ) ;
261
266
262
267
// Create a training pipeline.
263
268
var featurizationPipeline = mlContext . Transforms . Concatenate ( "Features" , Iris . Features )
@@ -306,7 +311,8 @@ public void ContinueTrainingOnlineGradientDescent()
306
311
307
312
// Get the dataset.
308
313
var data = mlContext . Data . LoadFromTextFile < HousingRegression > ( GetDataPath ( TestDatasets . housing . trainFilename ) ,
309
- separatorChar : TestDatasets . housing . fileSeparator , hasHeader : TestDatasets . housing . fileHasHeader ) ;
314
+ separatorChar : TestDatasets . housing . fileSeparator ,
315
+ hasHeader : TestDatasets . housing . fileHasHeader ) ;
310
316
311
317
// Create a transformation pipeline.
312
318
var featurizationPipeline = mlContext . Transforms . Concatenate ( "Features" , HousingRegression . Features )
@@ -349,7 +355,8 @@ public void ContinueTrainingLinearSymbolicStochasticGradientDescent()
349
355
350
356
// Get the dataset.
351
357
var data = mlContext . Data . LoadFromTextFile < TweetSentiment > ( GetDataPath ( TestDatasets . Sentiment . trainFilename ) ,
352
- separatorChar : TestDatasets . Sentiment . fileSeparator , hasHeader : TestDatasets . Sentiment . fileHasHeader ,
358
+ separatorChar : TestDatasets . Sentiment . fileSeparator ,
359
+ hasHeader : TestDatasets . Sentiment . fileHasHeader ,
353
360
allowQuoting : TestDatasets . Sentiment . allowQuoting ) ;
354
361
355
362
// Create a transformation pipeline.
@@ -396,7 +403,8 @@ public void ContinueTrainingPoissonRegression()
396
403
397
404
// Get the dataset.
398
405
var data = mlContext . Data . LoadFromTextFile < HousingRegression > ( GetDataPath ( TestDatasets . housing . trainFilename ) ,
399
- separatorChar : TestDatasets . housing . fileSeparator , hasHeader : TestDatasets . housing . fileHasHeader ) ;
406
+ separatorChar : TestDatasets . housing . fileSeparator ,
407
+ hasHeader : TestDatasets . housing . fileHasHeader ) ;
400
408
401
409
// Create a transformation pipeline.
402
410
var featurizationPipeline = mlContext . Transforms . Concatenate ( "Features" , HousingRegression . Features )
@@ -439,8 +447,8 @@ public void MetacomponentsFunctionAsExpectedOva()
439
447
var mlContext = new MLContext ( seed : 1 ) ;
440
448
441
449
var data = mlContext . Data . LoadFromTextFile < Iris > ( GetDataPath ( TestDatasets . iris . trainFilename ) ,
442
- hasHeader : TestDatasets . iris . fileHasHeader ,
443
- separatorChar : TestDatasets . iris . fileSeparator ) ;
450
+ hasHeader : TestDatasets . iris . fileHasHeader ,
451
+ separatorChar : TestDatasets . iris . fileSeparator ) ;
444
452
445
453
// Create a model training an OVA trainer with a binary classifier.
446
454
var anomalyDetectionTrainer = mlContext . AnomalyDetection . Trainers . AnalyzeRandomizedPrincipalComponents ( ) ;
0 commit comments