Skip to content

Commit b809394

Browse files
authored
XML documentation for Symbolic Stochastic Gradient Descent Trainer. (#3396)
* XML documentation for Symbolic Stochastic Gradient Descent Trainer. * PR feedback plus more cleanup.
1 parent 4824f42 commit b809394

File tree

2 files changed

+11
-10
lines changed

2 files changed

+11
-10
lines changed

src/Microsoft.ML.Mkl.Components/MklComponentsCatalog.cs

+2-2
Original file line numberDiff line numberDiff line change
@@ -69,7 +69,7 @@ public static OlsTrainer Ols(
6969
}
7070

7171
/// <summary>
72-
/// Create an <see cref="SymbolicSgdLogisticRegressionBinaryTrainer"/> with advanced options, which predicts a target using a linear binary classification model trained over boolean label data.
72+
/// Create <see cref="SymbolicSgdLogisticRegressionBinaryTrainer"/>, which predicts a target using a linear binary classification model trained over boolean label data.
7373
/// Stochastic gradient descent (SGD) is an iterative algorithm that optimizes a differentiable objective function.
7474
/// The <see cref="SymbolicSgdLogisticRegressionBinaryTrainer"/> parallelizes SGD using <a href="https://www.microsoft.com/en-us/research/project/project-parade/#!symbolic-execution">symbolic execution</a>.
7575
/// </summary>
@@ -102,7 +102,7 @@ public static SymbolicSgdLogisticRegressionBinaryTrainer SymbolicSgdLogisticRegr
102102
}
103103

104104
/// <summary>
105-
/// Create an<see cref= "SymbolicSgdLogisticRegressionBinaryTrainer" />, which predicts a target using a linear binary classification model trained over boolean label data.
105+
/// Create <see cref= "SymbolicSgdLogisticRegressionBinaryTrainer" /> with advanced options, which predicts a target using a linear binary classification model trained over boolean label data.
106106
/// Stochastic gradient descent (SGD) is an iterative algorithm that optimizes a differentiable objective function.
107107
/// The <see cref="SymbolicSgdLogisticRegressionBinaryTrainer"/> parallelizes SGD using <a href="https://www.microsoft.com/en-us/research/project/project-parade/#!symbolic-execution">symbolic execution</a>.
108108
/// </summary>

src/Microsoft.ML.Mkl.Components/SymSgdClassificationTrainer.cs

+9-8
Original file line numberDiff line numberDiff line change
@@ -36,8 +36,8 @@ namespace Microsoft.ML.Trainers
3636
/// </summary>
3737
/// <remarks>
3838
/// <format type="text/markdown"><![CDATA[
39-
/// To create this trainer, use [SymbolicStochasticGradientDescent](xref:Microsoft.ML.MklComponentsCatalog.SymbolicSgdLogisticRegression(Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers,System.String,System.String,System.Int32)
40-
/// or [SymbolicStochasticGradientDescent(Options)](xref:Microsoft.ML.MklComponentsCatalog.SymbolicSgdLogisticRegression(Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers,Microsoft.ML.Trainers.SymbolicSgdLogisticRegressionBinaryTrainer.Options).
39+
/// To create this trainer, use [SymbolicStochasticGradientDescent](xref:Microsoft.ML.MklComponentsCatalog.SymbolicSgdLogisticRegression(Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers,System.String,System.String,System.Int32))
40+
/// or [SymbolicStochasticGradientDescent(Options)](xref:Microsoft.ML.MklComponentsCatalog.SymbolicSgdLogisticRegression(Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers,Microsoft.ML.Trainers.SymbolicSgdLogisticRegressionBinaryTrainer.Options)).
4141
///
4242
/// [!include[io](~/../docs/samples/docs/api-reference/io-columns-binary-classification.md)]
4343
///
@@ -48,21 +48,22 @@ namespace Microsoft.ML.Trainers
4848
/// | Is normalization required? | Yes |
4949
/// | Is caching required? | No |
5050
/// | Required NuGet in addition to Microsoft.ML |Microsoft.ML.Mkl.Components |
51+
///
5152
/// ### Training Algorithm Details
52-
/// The symbolic SGD is a classification algorithm that makes its predictions by finding a separating hyperplane.
53+
/// The symbolic stochastic gradient descent is an algorithm that makes its predictions by finding a separating hyperplane.
5354
/// For instance, with feature values $f0, f1,..., f_{D-1}$, the prediction is given by determining what side of the hyperplane the point falls into.
54-
/// That is the same as the sign of the feautures' weighted sum, i.e. $\sum_{i = 0}^{D-1} (w_i * f_i)$, where $w_0, w_1,..., w_{D-1}$ are the weights computed by the algorithm.
55+
/// That is the same as the sign of the feature's weighted sum, i.e. $\sum_{i = 0}^{D-1} (w_i * f_i)$, where $w_0, w_1,..., w_{D-1}$ are the weights computed by the algorithm.
5556
///
56-
/// While most of SGD algorithms is inherently sequential - at each step, the processing of the current example depends on the parameters learned from previous examples.
57+
/// While most symbolic stochastic gradient descent algorithms are inherently sequential - at each step, the processing of the current example depends on the parameters learned from previous examples.
5758
/// This algorithm trains local models in separate threads and probabilistic model cobminer that allows the local models to be combined
58-
/// to produce the same result as what a sequential SGD would have produced, in expectation.
59+
/// to produce the same result as what a sequential symbolic stochastic gradient descent would have produced, in expectation.
5960
///
6061
/// For more information see [Parallel Stochastic Gradient Descent with Sound Combiners](https://arxiv.org/abs/1705.08030).
6162
/// ]]>
6263
/// </format>
6364
/// </remarks>
64-
/// <seealso cref="MklComponentsCatalog.SymbolicSgdLogisticRegression(BinaryClassificationCatalog.BinaryClassificationTrainers, string, string, int)" />
65-
/// <seealso cref="MklComponentsCatalog.SymbolicSgdLogisticRegression(BinaryClassificationCatalog.BinaryClassificationTrainers, Options)"/>
65+
/// <seealso cref="Microsoft.ML.MklComponentsCatalog.SymbolicSgdLogisticRegression(Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers,System.String,System.String,System.Int32)" />
66+
/// <seealso cref="Microsoft.ML.MklComponentsCatalog.SymbolicSgdLogisticRegression(Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers,Microsoft.ML.Trainers.SymbolicSgdLogisticRegressionBinaryTrainer.Options)"/>
6667
/// <seealso cref="Options"/>
6768
public sealed class SymbolicSgdLogisticRegressionBinaryTrainer : TrainerEstimatorBase<BinaryPredictionTransformer<TPredictor>, TPredictor>
6869
{

0 commit comments

Comments
 (0)